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Distributed Multi-Agent Reinforcement Learning Based on
Graph-Induced Local Value Functions

Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty and Piyush K. Sharma

Abstract—Achieving distributed reinforcement learning (RL)
for large-scale cooperative multi-agent systems (MASs) is chal-
lenging because: (i) each agent has access to only limited informa-
tion; (ii) issues on scalability and sample efficiency emerge due to
the curse of dimensionality. In this paper, we propose a general
distributed framework for sample efficient cooperative multi-
agent reinforcement learning (MARL) by utilizing the structures
of graphs involved in this problem. We introduce three coupling
graphs describing three types of inter-agent couplings in MARL,
namely, the state graph, observation graph and reward graph.
By further considering a communication graph, we propose two
distributed RL approaches based on local value functions derived
from the coupling graphs. The first approach is able to reduce
sample complexity significantly under specific conditions on the
aforementioned four graphs. The second approach provides an
approximate solution and can be efficient even for problems with
dense coupling graphs. Here there is a trade-off between mini-
mizing the approximation error and reducing the computational
complexity. Simulations show that our RL algorithms have a
significantly improved scalability to large-scale MASs compared
with centralized and consensus-based distributed RL algorithms.

Index Terms—Reinforcement learning, distributed learning,
optimal control, Markov decision process, multi-agent systems

I. INTRODUCTION

Reinforcement Learning (RL) [1] aims to find an optimal
policy for an agent to accomplish a specific task by making
this agent interact with the environment. Although RL has
found wide practical applications such as boarding games [2],
robotics [3], and power systems [4], the problem is much
more complex for multi-agent reinforcement learning (MARL)
due to the non-stationary environment for each agent and
the curse of dimensionality. MARL, therefore, has attracted
increasing attention recently, and has been studied extensively,
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see the survey papers [5]–[7]. Nonetheless, many challenges
still remain to be overcome. In this paper, we focus on dealing
with the following two difficulties in developing distributed co-
operative RL algorithms for large-scale networked multi-agent
systems (MASs): (i) how to deal with inter-agent couplings
all over the network with only local information observable
for each agent; and (ii) how to guarantee scalability of the
designed RL algorithm to large-scale network systems?

The first challenge refers to the fact that an agent cannot
make its decision independently since it will affect and be
affected by other agents in different ways. There are mainly
three types of structure constraints causing inter-agent cou-
plings in MARL1 that have been considered in the literature,
e.g., coupled dynamics (transition probability) [8], [9], partial
observability2 [10]–[12], and coupled reward functions [9],
[13]–[15]. The aforementioned references either consider only
one type of structure constraints, or employ only one graph
to characterize different types of structure constraints. To
give a specific example, consider the MAS as a network of
linear systems with dynamics coupling, and set the global
objective function as an accumulated quadratic function of
state and control policy, the problem of learning an optimal
distributed policy becomes a data-driven distributed linear
quadratic regulator (LQR) design problem [16], [17], which
involves all the aforementioned structure constraints. In the
literature, distributed RL algorithms e.g., [17]–[19] have been
proposed to deal with this problem. However, the three types
of structure constraints are yet to be efficiently utilized.
Moreover, the most popular formulation of MARL has long
been known as the Markov games [20], while the multi-agent
LQR problem [16] is only a specific application scenario.

1In the literature, there have been many different settings for the MARL
problem. Our work aims to find a distributed control policy for a dynamic
MAS to cooperatively maximize an accumulated global joint reward function.
In our literature review, a reference is considered as an MARL reference as
long as it employed RL to seek a policy for a group of agents to cooperatively
optimize an accumulated global joint function in a dynamic environment.

2Partial observability generally means that only incomplete information of
the environment is observed by the learner. In many numerical experiments for
MARL, e.g., [10], [11], partial observation refers to the observation on partial
agents and the environment. In this work, we consider a specific scenario
where each agent only observes partial agents, which is consistent with [12].
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The scalability issue, as the second challenge, is resulted
from high dimensions of state and action spaces of MASs.
Although each agent may represent an independent individual,
the inter-agent couplings in the MARL problem make it
difficult for each agent to learn its optimal policy w.r.t. the
global objective with only local information. In the literature
of distributed RL [12], [13], [21], [22], when dealing with
these couplings, the most common method is to make different
agents exchange information with each other via a consensus
algorithm, so that each agent is able to estimate the value
of the global reward function although it only has access to
local information from neighbors. However, the performance
of such distributed RL algorithms will be similar to or even
worse than the centralized RL algorithm because (i) it may
take a long time for convergence of consensus when the
network is of large scale, (ii) essentially the learning process
is conducted via an estimated global reward information. As a
result, consensus-based distributed RL algorithms still suffer
from significant scalability issues in terms of the convergence
rate and the learning variance.

In this paper, we develop distributed scalable algorithms for
a class of cooperative MARL problems where each agent has
its individual state space and action space (similar to [8], [9]),
and all the aforementioned three types of couplings exist. We
consider a general case where the inter-agent state transition
couplings, state observation couplings, and reward couplings
are characterized by three different graphs, namely, state
graph, observation graph, and reward graph, respectively.
Based on these graphs, we derive a learning graph, which
describes the required information flow during the RL process.
The learning graph also provides a guidance for constructing
a local value function (LVF) for each agent, which is able to
play the role of the global value function (GVF)3 in learning,
but only involves partial agents, and therefore, can enhance
scalability of the learning algorithm.

When each agent has access to all the information involved
in LVF, distributed RL can be achieved by policy gradient
algorithms immediately. However, this approach is usually
based on interactions between many agents, which requires a
dense communication graph. To further reduce the number of
communication links, we design a distributed RL algorithm
based on local consensus, whose computational complexity
depends on the aforementioned three graphs (see Theorem 1).
Compared with global consensus-based RL algorithms, local
consensus algorithms usually have an improved convergence

3Please note that the abbreviation of “GVF” has been used to denote
“General Value Function” in the literature, e.g., [23]. In this paper, “GVF”
always means global value function.

rate as the network scale is reduced4. This implies that the
scalability of this RL algorithm requires specific conditions
on the graphs embedded in the MARL problem. To relax
the graphical conditions, we further introduce a truncation
index and design a truncated LVF (TLVF), which involves
fewer agents than LVF. While being applicable to MARL
with any graphs, the distributed RL algorithm based on TLVFs
only generates an approximate solution, and the approximation
error depends on the truncation index to be artificially designed
(see Theorem 2). We will show that there is a trade-off
between minimizing the approximation error and reducing the
computational complexity (enhancing the convergence rate).

In [25], we have considered the case when no couplings
exist between the rewards of different individual agents. In
contrast, this paper considers coupled individual rewards,
which further induces a reward graph. Moreover, this paper
provides more interesting graphical results, a distributed RL
algorithm via local consensus, and a TLVF-based distributed
RL framework.

The main novel contributions of our work that add to the
existing literature are summarized as follows.

(i). We consider a general formulation for distributed RL of
networked dynamic agents, where the aforementioned three
types of inter-agent couplings exist in the problem, simul-
taneously. Similar settings have been considered in [8], [9].
The main novelty here is that the three coupling graphs in
this paper are fully independent and inherently exist in the
problem. Based on the three graphs corresponding to three
types of couplings, we derive a learning graph describing
the information flow required in learning. By discussing the
relationship between the learning graph and the three coupling
graphs (see Lemma 13), one can clearly observe how different
types of couplings affect the required information exchange in
learning.

(ii). By employing the learning graph, we construct a LVF
for each agent such that the partial gradient of the LVF w.r.t.
each individual’s policy parameter is exactly the same as that
of the GVF (see Lemma 2), which can be directly employed in
policy gradient algorithms. MARL algorithms based on LVFs
have also been proposed by network-based LVF approximation
[8], [9], [26] and value function decomposition [14], [15],
[27], [28]. However, the network-based LVF approximation
only provided an approximate solution. Moreover, the afore-

4Although the convergence rate of a consensus algorithm depends on not
only the network scale but also the communication weights, typically the
convergence rate can be significantly improved if the network scale is largely
reduced. In [24], the relationship between consensus convergence time and
the number of nodes in the network is analyzed under a specific setting for
the communication weights.
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mentioned value function decomposition references always
assumed that all the agents share a common environment state,
therefore never involved the state graph (describing dynamics
couplings between different agents).

(iii). To show the benefits of employing the constructed
LVFs in policy gradient algorithms, we focus on zeroth-
order optimization (ZOO)5. Due to the removal of redundant
information (less agents are involved) in gradient estimation,
our learning framework based on LVFs always exhibits a
reduced gradient estimation variance (see Remark 3) com-
pared with GVF-based policy evaluation. Note that most of
the existing distributed ZOO algorithms [31]–[34] essentially
evaluate policies via the global value.

(iv). To deal with the scenario when the learning graph is
dense, we construct TLVFs by further neglecting the couplings
between agents that are far away in the coupling graph. The
underlying idea is motivated by [8], [9], [26]. Our design,
however, is different from them as they construct a TLVF for
each agent, whereas we deign a TLVF for each cluster.

The rest of this paper is organized as follows. Section
II describes the MARL formulation and the main goal of
this paper. Section III introduces the LVF design and the
learning graph derivation. Section IV shows the distributed RL
algorithm based on LVFs and local consensus, and provides
convergence analysis. Section V introduces the RL algorithm
based on TLVFs as well as the convergence analysis. Section
VII shows several simulation examples to illustrate the advan-
tages of our proposed algorithms. Section VIII concludes the
paper. Sections IX and X provide theoretical proofs and the
relationships among different cluster-wise graphs, respectively.

Notation: Throughout the paper, unless otherwise stated,
GX = (V, EX) always denotes an unweighted directed graph6,
where V = {1, ..., N} is the set of vertices, EX ⊂ V×V is the
set of edges, (i, j) ∈ EX means that there is a directional edge
in G from i to j. The in-neighbor set and out-neighbor set of
agent i are denoted by NX

i = {j ∈ V : (j, i) ∈ EX}, and
NX+

i = {j ∈ V : (i, j) ∈ EX}, respectively. A path from i to
j is a sequence of distinct edges of the form (i1, i2), (i2, i3),
..., (ir−1, ir) where i1 = i and ir = j. We use i

E−→ j

to denote that there is a path from i to j in edge set E . A
subgraph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E is said to

5The ZOO method can be implemented with very limited information (only
the objective function evaluations), therefore has a wide range of applications.
In recent years, the ZOO-based RL algorithms have been shown efficient in
solving model-free optimal control problems, e.g., [17], [29], [30]. Inspired
by these facts, we employ the ZOO-based method to deal with the model-
free optimal distributed control problem of MASs under a very general
formulation.

6In this paper, we will introduce multiple graphs, here X may represent S,
O, C, R and L.

be a strongly connected component (SCC) if there is a path
between any two vertices in G′. One vertex is a special SCC.
Given a directed graph G = (V, E), we define the transpose
graph of G as G⊤ = (V, E⊤), where E⊤ = {(i, j) ∈ V ×
V : (j, i) ∈ E}. Given two edge sets E1 and E2, it can be
verified that E1 ⊆ E2 if and only if E⊤

1 ⊆ E⊤
2 . Moreover, if

(i, j), (j, i) ∈ E , then (i, j), (j, i) ∈ E⊤. Given a set A and a
vector v, vA = (..., vi, ...)

⊤ with i ∈ A. Given a set X , P(X)

is the set of probability distributions over X . The d×d identity
matrix is denoted by Id, the a× b zero matrix is denoted by
0a×b. Rd is the d-dimensional Euclidean space. N is the set
of non-negative integers.

II. MULTI-AGENT REINFORCEMENT LEARNING

Consider the optimal control problem of a MAS modeled
by a Markov decision process (MDP), which is described as
a tuple M = (G{S,O,R,C},Πi∈VTi,Πi∈VOi,Πi∈Vri, γ) with
G{S,O,R,C} = (V, E{S,O,R,C}) describing different interaction
graphs and Ti = (Si,Ai,Pi) specifying the evolution process7

of agent i. Detailed notation explanations are listed below:

• V = {1, ..., N} is the set of agent indices;
• ES ⊆ V × V is the edge set of the state graph GS =

(V, ES), which specifies the dynamics couplings among
the agents’ states, (i, j) ∈ ES implies that the state
evolution of agent j involves the state of agent i;

• EO ⊆ V × V is the edge set of the observation graph
GO = (V, EO), which determines the partial observation
of each agent. More specifically, agent i observes the state
of agent j if (j, i) ∈ EO;

• ER ⊆ V × V is the edge set of the reward graph
GR = (V, ER), which describes inter-agent couplings in
the reward of each individual agent, the reward of agent i
involves the state and the action of agent j if (j, i) ∈ ER;

• EC ⊆ V ×V is the edge set of the communication graph
GC = (V, EC). An edge (i, j) ∈ EC implies that agent j
is able to receive information from agent i;

• Si and Ai are the state space and the action space of agent
i, respectively, and can be either continuous or finite;

• Pi : Πj∈IS
i
Sj × Πj∈IS

i
Aj → P(Si) is the transition

probability function specifying the state probability dis-
tribution of agent i at the next time step under current
states {sj}j∈IS

i
and actions {aj}j∈IS

i
, here IS

i = {j ∈
V : (j, i) ∈ ES} ∪ {i} includes agent i and its neighbors
in the state graph GS ;

7The evolution process of each agent depends on other agents, therefore
does not possess the Markov property. However, the whole MAS has the
Markov property as its full state only depends on the state and action at last
step, and is independent of previous states and actions.
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• ri : Πj∈IR
i
Sj ×Πj∈IR

i
Aj → R is the immediate reward

returned to agent i when each agent j ∈ IR
i takes action

aj ∈ Aj at the current state sj ∈ Sj , here IR
i = {j ∈

V : (j, i) ∈ ER} ∪ {i};
• Oi = {Πj∈IO

i
Sj} is the observation space of agent i,

which includes the states of all the agents in IO
i , here

IO
i = {j ∈ V : (j, i) ∈ EO} ∪ {i};

• γ ∈ (0, 1) is the discount factor that trades off the
instantaneous and future rewards.

Let S = Πj∈VSj , A = Πj∈VAj , and P = Πj∈VPj denote
the joint state space, action space and transition probability
function of the whole MAS. Each agent i has a state si ∈ Si

and an action ai ∈ Ai. The global state and action at time
step t are denoted by s(t) = (s1(t), ..., sN (t)) and a(t) =

(a1(t), ..., aN (t)), respectively. Let π : S → P(A) and πi :

Oi → P(Ai) be a global policy function of the MAS and
a local policy function of agent i, respectively. Here P(A)

and P(Ai) are the sets of probability distributions over A and
Ai, respectively. The global policy is the policy of the whole
MAS from the centralized perspective, thus is based on the
global state s. The local policy of agent i is based on the
local observation oi = sIO

i
∈ Oi, which constitutes states of

partial agents. Note that a global policy always corresponds
to a collection of local policies uniquely.

At each time step t of the MDP, each agent i ∈ V executes
an action ai(t) ∈ Ai according to its policy πi and the local
observation oi(t) = sIO

i
(t) ∈ Oi, then obtains a reward

ri(sIR
i
(t), aIR

i
(t)). Note that such a formulation is different

from that in [13], [35], where the transition and reward of
each agent are associated with the global state s(t). Moreover,
different from many MARL references where the reward of
each agent only depends on its own state and action, in our
work, we consider a more general formulation for cooperative
MARL where the reward of each agent may be influenced by
other agents, determined by the reward graph GR = (V, ER).

The long-term accumulated discounted global reward is
defined as

R =

∞∑
t=0

γtr(s(t), a(t)) =

N∑
i=1

∞∑
t=0

γtri(sIR
i
(t), aIR

i
(t)), (1)

where r(s(t), a(t)) is the global reward for the MAS at
time t, ri is the local reward for agent i at time t. Note
that maximizing R is equivalent to maximizing its average
1
NR, which has been commonly adopted as the learning
objective in many MARL references, e.g. [12], [13], [21].
Based on this long term global reward, with a given policy
π, we are able to define the global state value function
V π(s) = E[

∑∞
t=0 γ

tr(s(t), a(t))|s(0) = s] and state-action

value function Qπ(s, a) = E[
∑∞

t=0 γ
tr(s(t), a(t))|s(0) =

s, a(0) = a], which describe the expected long term global
reward when agents have initial state s and initial state-
action pair (s, a), respectively. Similarly, the local state value
function with initial state s for each agent i can be defined as
V π
i (s) = E[

∑∞
t=0 γ

tri(sIR
i
(t), aIR

i
(t))|s(0) = s].

The goal of this paper is to design a distributed RL
algorithm for the MAS to find a control policy π maximizing
J(π) = Es∼DV

π(s), whose expression is

Es∼D

[
N∑
i=1

∞∑
t=0

Ea(t)∼π(s(t))γ
tri(sIR

i
(t), aIR

i
(t))|s(0) = s

]
,

(2)

where D denotes the distribution that the initial state follows.
For convenience of analysis, we also define the expected value
to be maximized corresponding to individual reward for each
agent i as

Ji(π) = Es∼DV
π
i (s), i ∈ V. (3)

Note that here Ji may be determined by the policies of partial
agents, instead of the global policy π. However, the global
policy π is always able to determine Ji, therefore, can be
employed as the argument of Ji.

We parameterize the global policy π(s, a) using parameters
θ = (θ⊤1 , ..., θ

⊤
N )⊤ ∈ Rd with θi ∈ Rdi . The global policy

and agent i’s local policy are then rewritten as πθ(s, a)

and πθi
i (oi, ai), respectively. Note that given any global state

s ∈ S, a global policy and a collection of local policies can
always be transformed to each other. Now we turn to solve
the following optimization problem:

max
θ

J(θ) := Es∼DV
π(θ)(s). (4)

Next we present a distributed multi-warehouse resource
transfer problem to demonstrate our formulation. This example
is a variation of many practical applications, e.g., it can also
be read as a problem of energy transfer among different rooms
in a smart building.

Example 1: Consider a network of 9 warehouses V =

{1, ..., 9} consuming resources while transferring resources
among each other. The goal is to guarantee adequate supplies
for each warehouse. Each warehouse is denoted by a vertex
in the graph. The state graph GS = (V, ES) interpreting the
transition relationship is shown in Fig. 1. The observation
graph GO only contains 3 edges involving 3 leaf nodes in graph
GS , as shown in Fig. 1, which implies that only warehouses
2, 3, and 5 observe the current resource stock of warehouses
other than itself. The motivation behind this setting is that
warehouses 1, 4 and 6 do not send out resources at all,
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hence their neighbors need to keep monitoring their states
so that the resources sent to them are neither insufficient nor
redundant. The reward graph GR is shown in Fig. 2, which
contains GO as a subgraph. This ensures that the observation
of each warehouse always influences its own reward, implying
that a warehouse is responsible for the resource shortage of
those warehouses it can observe. At time step t, warehouse
i ∈ V stores resources of the amount mi(t) ∈ R, receives
a local demand di(t) ∈ R, sends partial of its resources
to and receives resources from its neighbors j ∈ N S

i in
the state graph GS , besides its neighbors, warehouse i also
receives resources supply of the amount yi(t) from outside. Let
zi(t) = yi(t)−di(t), then agent i has the following dynamics

mi(t+ 1) = mi(t)−
∑

j∈Nout
i

bij(oi(t))αimi(t)

+
∑

j∈NC
i

bji(oj(t))αjmj(t) + zi(t),

zi(t) = Ai sin(wit+ ϕi) + ωi, (5)

where bij(oi(t)) ∈ [0, 1] denotes the fraction of resources
agent i sends to its neighbor j at time t, αi determines whether
the i-th warehouse has resources to send out, i.e., αi = 0

if mi ≤ 0, and αi = 1 otherwise, 0 < Ai < mi(0) is
a constant, wi is a bounded random quantity, i ∈ V and
ϕ is a positive scalar, N S

i = {j ∈ V : (j, i) ∈ ES} and
N S+

i = {j ∈ V : (i, j) ∈ ES} are the in-neighbor set and the
out-neighbor set of agent i, respectively.

From the MARL perspective, besides the three graphs
and transition dynamics introduced above, the rest of entries
in M for each agent i at time step t can be recognized
as Individual state: si(t) = (mi(t), zi(t))

⊤. Individual
action: ai(t) = (..., bij(oi(t)), ...)

⊤
j∈NS+

i

. Individual policy
function: πi(·) = (..., bij(·), ...)⊤j∈NS+

i

. Partial observation:

oi(t) = ({mj(t)}j∈IO
i
, zi(t))

⊤ ∈ R|IO
i |+1. Individual re-

ward: ri(t) =
∑

j∈IR
i
τj(t), where τj(t) = 0 if mj(t) ≥ 0,

and τj(t) = −m2
j (t) otherwise.

The goal of the resource transfer problem is to maximize
Es(0)∼D

∑N
i=1

∑∞
t=0 γ

tri(t) under the dynamics constraint
(5). In other words, we aim to find the optimal transfer policy
such that each warehouse keeps having enough resources for
use.

Remark 1: Note that many settings in this example can be
adjusted while maintaining the applicability of the proposed
approach in this paper. For example, the partial observation of
each agent i can be replaced by oi = (...,mj(t), dj(t), ...)

⊤
j∈IO

i

or oi = (...,mj(t), ...)
⊤
j∈IO

i
. Depending on different observa-

tion settings, the optimal policy may change.

1 2 6

34 5 7 8

9

1 2 6

34 5 7 8

9

Fig. 1. The state graph GS = (V, ES) and the observation graph GO =

(V, EO). The black and red lines correspond to edges in ES and EO ,
respectively.
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1 2 6

34 5 7 8

9

Fig. 2. The reward graph GR = (V, ER).

Existing distributed policy gradient methods such as actor-
critic [13] and zeroth-order optimization [12] can be employed
to solve the problem when there is a connected undirected
communication graph among the agents. However, these ap-
proaches are based on estimation of the GVF, which requires a
large amount of communications during each learning episode.
Moreover, policy evaluation based on the GVF has a signif-
icant scalability issue due to the high dimension of the state
and action spaces for large-scale networks.

III. LOCAL VALUE FUNCTION AND LEARNING GRAPH

In this section, we introduce how to design an appropriate
LVF for each agent, which involves only partial agents, but its
gradient w.r.t. the local policy parameter is the same as that
of the GVF.

A. Local Value Function Design

Although the state graph GS , the observation graph GO, and
the reward graph GR can be defined independently, we observe
that all of them will induce the couplings between different
agents in the optimization objective. In this subsection, we will
build a connection between these graphs and the couplings
between agents, based on which the LVFs will be designed.

Define a new graph GSO ≜ (V, ESO) where ESO = ES∪EO,
and define

RSO
i = {j ∈ V : i

ESO−→ j} ∪ {i}, (6)

which includes the vertices in graph GSO that are reachable
from vertex i and vertex i itself. In fact, the states of the agents
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in RSO
i will be affected by agent i’s state and action as time

goes on.
To design the LVF for each agent i, we need to specify the

agents whose individual rewards will be affected by the action
of agent i. To this end, we define the following composite
reward for agent i:

r̂i(s(t), a(t)) =
∑
j∈IL

i

rj(sIR
j
(t), aIR

j
(t)), (7)

where

IL
i = {j ∈ V : IR

j ∩RSO
i ̸= ∅} = ∪k∈RSO

i
IR+
k , (8)

here IR+
k = {j ∈ V : (k, j) ∈ ER} ∪ {k} consists of the

out-neighbors of vertex k in graph GR and itself.
To demonstrate the definitions of RSO

i and IL
i , let us look

at Example 1. One can observe from Fig. 1 and Fig. 2 that
RSO

1 = RSO
2 = IL

1 = IL
2 = {1, 2, 3, 4}. In fact, we have

RSO
i = IL

i since IR+
k ⊂ RSO

i for all k ∈ RSO
i , i ∈ V .

Accordingly, we define the LVF for agent i as

V̂ π
i (s) = E

[ ∞∑
t=0

γtr̂i(s(t), a(t))|s(0) = s

]
. (9)

When the GVF is replaced by the LVF, the agent i is
expected to maximize the following objective:

Ĵi(θ) = Es∼DV̂
π(θ)
i (s) =

∑
j∈IL

i

Jj(θ). (10)

Different from the global objective function J(θ) =∑
j∈V Jj(θ), the local objective Ĵi(θ) only involves agents

in a subset IL
i ⊆ V . We make the following assumption on

the graphs so that Ĵi(θ) ̸= J(θ) for at least one agent i.
Assumption 1: There exists a vertex i ∈ V such that IL

i ̸=
V .

Define graph GSOR = GSO ∪ GR. The following lemma
shows a sufficient graphical condition and a necessary graph-
ical condition for Assumption 1.

Lemma 1: The following statements are true:
(i). Assumption 1 holds if graph GSOR has n > 1 SCCs.
(ii). Assumption 1 holds only if graph GSO has n > 1 SCCs.
One may question if the converses of the statements in

Lemma 1 are true. Both answers are no. This is because
graph GR may contain some edges that connect different
SCCs in GSO, but the paths involving more than two vertices
in GR cannot be used in expanding IR

i . For statement (i),
GSOR may be strongly connected even when there exists a
vertex j ∈ V \ IL

i . Fig. 3 shows a counter-example where
IL
1 = {1, 2, 4} is only a subset of V but GSOR is strongly

connected. For statement (ii), a simple counter-example can

1 2

34

34

1 2

3 4

1 2

3 4

1 2

3 4
(a) (b) (c)

1 2

3 4

1 2

3 4
(d)

Fig. 3. A counter-example for the converse of Lemma 1 (i). Graphs (a), (b),
(c), and (d) denote graphs GSO , GR, GSOR, and the learning graph GL,
respectively.

be obtained by setting ER = V × V . Note that Lemma 1
induces a necessary and sufficient condition for Assumption 1
when GSO = GSOR, which happens when GR ⊆ GSO.

Next we show that each agent i ∈ V maximizing (10) is
equivalent to maximizing the global objective (4).

Given a function f(θ) : Rd → R and a positive δ, we define

fδ(θ) = E[f(θ + δu)], u ∼ N (0, Id). (11)

The following lemma shows the equivalence between the gra-
dients of the smoothed local objective Ĵδ

i (θ) and the smoothed
global objective Jδ(θ) w.r.t. the local policy parameter of each
individual agent.

Lemma 2: The following statements are true:
(i) ∇θiJ

δ(θ) = ∇θi Ĵ
δ
i (θ) for any δ > 0, i ∈ V .

(ii) If Ji(θ), i ∈ V are differentiable, then ∇θiJ(θ) =

∇θi Ĵi(θ), i ∈ V .
Lemma 2 reveals the implicit connection between graphs

and agents’ couplings in the optimization objective, and pro-
vides the theoretical guarantee for the reasonability of the
designed LVFs. It is important to give the following two notes.
(a). Although the RL algorithm in this paper is based on
ZOO, Lemma 2 is independent of ZOO. Therefore, Lemma
2 is also compatible with other policy gradient algorithms.
(b). Statement (i) in Lemma 2 does not require Ji(θ), i ∈ V
to be differentiable because Jδ(θ) = E[J(θ + δu)] is always
differentiable [36, Lemma 2].

In order to adapt our approach to the scenario when J(θ)

is not differentiable, we choose to find the stationary point of
Jδ(θ). The gap between J(θ) and Jδ(θ) can be bounded if
J(θ) is Lipschitz continuous and δ > 0 is sufficiently small.

To guarantee the Lipschitz continuity8 of J(θ), we make
the following assumption on functions V

π(θ)
i (s) for i ∈ V:

Assumption 2: V π(θ)
i (s), i ∈ V are Li-Lipschitz continuous

w.r.t. θ in Rd for any s ∈ S. That is, |V π(θ)
i (s)−V

π(θ′)
i (s)| ≤

8The Lipschitz continuity of a value function implies that similar policy
parameters have similar performance for the problem. This is reasonable in
practice especially for problems with continuous state and action spaces. In
[37], it has been shown that the value function becomes Lipschitz continuous
w.r.t. policy parameters as long as both the MDP and the policy function have
Lipschitz continuity properties.
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Li∥θ − θ′∥ for any s ∈ S, θ, θ′ ∈ Rd.
Assumption 2 directly implies that Ji(θ) is Li-Lipschitz

continuous. Moreover, J(θ) is L-Lipschitz continuous in Rd,
where L ≜

∑
i∈V Li, due to the following fact:

|J(θ)− J(θ′)| ≤
∑
i∈V

|Ji(θ)− Ji(θ
′)|

≤
∑
i∈V

E
[∣∣∣V π(θ)

i (s)− V
π(θ′)
i (s)

∣∣∣] ≤
∑
i∈V

Li∥θ − θ′∥.
(12)

B. Learning Graph

Lemma 2 has shown that having the local gradient of a
specific local objective function is sufficient for each agent to
optimize its policy according to the following gradient ascent:

θk+1
i = θki +∇θi Ĵ

δ
i (θ

k), i ∈ V, (13)

where θk is the policy parameter at step k, and ∇θi Ĵ
δ
i (θ

k)

can be estimated by evaluating the value of Ĵδ
i (θ

k).
Then we are able to define the learning graph GL = (V, EL)

based on the set IL
i (8) in the LVF design, which interprets the

required reward information flow during the learning process.
The edge set EL is defined as:

EL = {(j, i) ∈ V × V : j ∈ IL
i , i ∈ V}. (14)

The definition of EL implies the following result.
Lemma 3: If (j, i) ∈ EL, then i

ESOR−→ j.
The converse of Lemma 3 is not true, see Fig. 3 as a
counterexample. More specifically, 1

ESOR−→ 3, as shown in
graph (c), however, (3, 1) /∈ EL, see the learning graph (d).

To better understand the learning graph GL, we find a
clustering V = ∪n

l=1Vl for the graph GSO, where Vl is the
vertex set of the l-th maximal strongly connected component
(SCC) in GSO, and Vl1 ∩ Vl2 = ∅ for any distinct l1, l2 ∈
C = {1, ..., n}. According to Lemma 1, such a clustering with
n > 1 can always be found under Assumption 1.

According to the definitions (8) and (14), we have the
following observations:

• The agents in each cluster Vl form a clique in GL.
• The agents in the same cluster share the same LVF.

The first observation holds because any pair of agents in
each cluster are reachable to each other and (j, i) ∈ EL as long
as j is reachable from i in graph GSO. The second observation
holds because RSO

i = RSO
j for any i and j belonging to the

same cluster, here RSO
i is defined in (6).

To demonstrate the edge set definition (14), the learning
graph corresponding to the state graph and the observation
graph in Fig. 1, and the reward graph in Fig. 2, is shown in
Fig. 4. In fact, it is interesting to see some connections between

1 2

34 5

6

7 8

9

Cluster 1

Cluster 2
Cluster 3 Cluster 4

1 2

34
5

6

7 8

9

Fig. 4. The learning graph GL corresponding to GSO in Fig. 1 and GR in
Fig. 2.

different graphs from the cluster-wise perspective. Please refer
to Appendix B for more details.

The learning graph GL interprets the required reward infor-
mation flow in our distributed MARL algorithm. If the agents
are able to exchange information via communications follow-
ing GL, then each agent can acquire the information of its LVF
via local communications with others. The zeroth-order oracle
in [36] can then be employed to estimate ∇θi Ĵ

δ
i (θ

k) in (13).
However, GL is usually dense, inducing high communication
costs, and having such a dense communication graph may be
unrealistic in practice. To further relax the condition on the
communication graph, in the next section, we will design a
distributed RL algorithm based on local consensus algorithms.

IV. DISTRIBUTED RL BASED ON LOCAL CONSENSUS

In this section, we propose a distributed RL algorithm based
on local consensus algorithms and ZOO with policy search in
the parameter space. ZOO-based RL with policy search in the
action space has been proposed in [38]. Compared to the action
space, the parameter space usually has a higher dimension.
However, the work in [38] requires the action space to be
continuous and leverages the Jacobian of the policy π w.r.t. θ.
Our RL algorithm is applicable to both continuous and discrete
action spaces and even does not require π to be differentiable.
In addition, our distributed learning framework based on LVFs
is compatible with policy search in the action space.

A. Communication Weights and Distributed RL Design

We have shown that agents in the same strongly connected
component share the same LVF. Therefore, there are n LVFs
to be estimated, where n is the number of maximal SCCs in
GSO. Moreover, it is unnecessary for an agent to estimate a
LVF that is independent of this agent. For notation simplicity,
we use Icl

l to denote the index set of agents involved in the
LVF for the l-th cluster, l ∈ C. As a result, Icl

l = IL
i if

i ∈ Vl. Moreover, we denote by nl ≜ |Icl
l | the number of

agents involved in the LVF of cluster l. Note that different
LVFs for different clusters may involve overlapped agents, that
is, it may hold that Icl

l1
∩ Icl

l2
̸= ∅ for different clusters l1, l2.



8

Suppose that the communication graph GC = (V, EC) is
available. To make each agent obtain all the individual rewards
involved in its LVF, we design a local consensus algorithm
based on which the agents involved in each LVF cooperatively
estimate the average of their rewards by achieving average
consensus. Define n communication weight matrices Cl ∈
RN×N , as follows:

Cl
ij

{
> 0, if i, j ∈ Icl

l , (i, j) ∈ EC ;

= 0, otherwise,
l ∈ C, (15)

where C = {1, ..., n} is the set of indices for clusters.

We assume that given an initial state, by implementing
the global joint policy π(θ) = (π1(θ1), ..., πN (θN )), each
agent i is able to obtain reward ri(θ, ξi, t), at each time step
t = 0, ..., Te−1, where Te is the number of evolution steps for
policy evaluation, ξi accounts for the random effects of both
the initial states and the state transition of agents involved in
agent i’s reward, E[ξi] = 0, and E[ξ2i ] = σ2

i , which is bounded,
i ∈ V . Then we rewrite the obtained individual value of agent
i as Wi(θ, ξi) ≜

∑Te−1
t=0 γtri(θ, ξi, t) = E[Wi(θ, ξi)] + ξi.

The quantity ξi can follow any distribution as long as it has a
zero mean and a bounded variance. The zero mean assumption
is to ensure that agent i is able to evaluate its individual
value Wi(θ, ξi) and thereby estimate the gradient accurately,
if sufficiently many noisy observations are collected. The
boundedness of σi is to guarantee the boundedness of each
noisy observation. Similar assumptions have been made in
other RL references, e.g., [39].

We further define Ŵi(θ, ξ) =
∑

j∈IL
i
Wj(θ, ξj) as the

observed LVF value of agent i, and define W (θ, ξ) =∑
i∈V Wi(θ, ξi) as the observed GVF value.

The distributed RL algorithm9 is shown in Algorithm 1. The
consensus algorithm (16) is to make each agent i in cluster Vl

estimate 1
nl
Ŵi(θ

k + δuk, ξk) = 1
nl

∑
j∈IL

i
Wj(θ

k + δuk, ξkj ),
which is the average of the reward sum among the agents
involved in the corresponding LVF.

To ensure that Algorithm 1 works efficiently, we make the
following assumption on graph GC .

Assumption 3: The communication graph GC is undirected,
and the agents specified by Icl

l form a connected component
of GC for all l ∈ C.

The following lemma gives a sufficient condition for As-
sumption 3.

Lemma 4: Given that graph GC is undirected, Assumption
3 holds if ESO ⊆ EC .

9In Algorithm 1, the transition probability of the MAS is never used. This
is consistent with most of model-free RL algorithms in the literature.

Algorithm 1 Distributed RL Algorithm
Input: Step-size η, initial state distribution D, number of learning
epochs K, number of evolution steps Te (for policy evaluation),
iteration number for consensus seeking Tc, initial policy parameter
θ0, smoothing radius δ > 0.
Output: θK .

1. for k = 0, 1, ...,K − 1 do
2. Sample sk0 ∼ D.
3. for all i ∈ V do (Simultaneous Implementation)
4. Agent i samples uk

i ∼ N (0, Idi), implements policy
πi(θ

k
i + δuk

i ) for t = 0, ..., Te−1, observes Wi(θ
k + δuk, ξki ).

For l ∈ C, sets µkl
i (0)←Wi(θ

k + δuk, ξki ) if i ∈ Icll , and sets
µkl
i (0)← 0 otherwise.

5. for v = 0, ..., Tc − 1 do
6. Agent i sends µkl

i (v), l ∈ C to its neighbors in GC ,
and computes µkl

i (v + 1) according to the following updating
law:

µkl
i (v + 1) =

∑
j∈IC

i

Cl
ijµ

kl
j (v), (16)

where ICi = NC
i ∪ {i}, NC

i denotes the neighbor set of agent
i in the communication graph GC .

7. end for
8. Agent i estimates its local gradient

gi(θ
k, uk, ξk) =

nliµ
kli
i (Tc)

δ
uk
i , (17)

where li denotes the cluster including i. Then agent i updates
its policy according to

θk+1
i = θki + ηgi(θ

k, uk, ξk). (18)

9. end for
10. end for

Proof: Note that for each cluster l ∈ C, there must exist a path
in GSO from cluster l to any agent in Icl

l , recall that GC is
undirected, agents in Icl

l must be connected in GC . ■

Once a communication graph GC satisfying Assumption 3
is available, we design the communication weights such that
the following assumption holds.

Assumption 4: Cl is doubly stochastic, i.e., Cl1N = 1N

and 1⊤
NCl = 1⊤

N , for all l ∈ C.
Assumption 4 guarantees that average consensus can be

achieved among the agents involved in each LVF. Since one
agent may be involved in LVFs of multiple clusters, it may
keep multiple different nonzero communication weights for
the same communication link. From the definition of Cl in
(15), Cl

jj′ = 0 for all j /∈ IL
i , and j′ ∈ V . Then µkl

j (t) = 0

for j /∈ IL
i for any p ≥ 0. Moreover, let Cl

0 ∈ Rnl×nl be
the principle submatrix of Cl by removing the j-th row and
column for all j /∈ IL

i , then Assumption 4 implies that Cl
0 is

doubly stochastic for all l ∈ C. Define ρl = ∥Cl
0− 1

nl
1nl

1⊤
nl
∥,

it has been shown in [40] that under Assumption 4, we have
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ρl ∈ (0, 1).
Remark 2: When graph GSO is strongly connected, all the

agents form one cluster and achieve average consensus during
the learning process. Algorithm 1 then reduces to a global
consensus-based distributed RL algorithm. In fact, under any
graph GSO, the global consensus-based framework can always
solve the distributed RL problem. However, when Assumption
1 holds, Algorithm 1 requires consensus to be achieved among
smaller-size groups, therefore exhibiting a faster convergence
rate. When the multi-agent network is of large scale, it is
possible that the number of agents involved in each LVF
is significantly smaller than the total number of agents in
the whole network. In such scenarios, Algorithm 1 converges
much faster than the global consensus-based algorithm due to
two reasons: (i) the average consensus tasks are performed
within smaller-size groups; (ii) the gradient estimation based
on the LVF Ĵi(θ) has a lower variance compared with that
based on the GVF J(θ), see Remark 3 for more details.

B. Convergence Analysis

In this subsection, convergence analysis of Algorithm 1 will
be presented. The following assumption is made to guarantee
the solvability of the problem (2).

Assumption 5: The individual reward of each agent at any
time t is uniformly bounded, i.e., rl ≤ ri(t) ≤ ru for all i ∈ V
and t ∈ N.

Lemma 5: Under Assumption 5, there exist Jl and Ju such
that Jl ≤ Ji(θ) ≤ Ju for any θ ∈ Rd, i ∈ V .

Lemma 5 implies that there exists an optimal policy for the
RL problem (4), which is the premise of solving problem (4).
Based on Lemma 5, we can bound Ĵi and J =

∑
i∈V Ji

by [Ĵl, Ĵu] and [Jl, Ju], respectively. The following lemma
bounds the error between the actual LVF and the expectation
of observed LVF.

Lemma 6: Under Assumption 5, the following holds for all
l ∈ C and i ∈ Vl:

|Ĵi(θ)− E[Ŵi(θ, ξ)]| ≤ nlγ
TeJ0, (19)

where J0 = max{|Jl|, |Ju|} = r0
1−γ , r0 = max{|rl|, |ru|},

nl = |IL
i | = |Icl

l | is the number of agents involved in Ĵi(θ).
Let µkl = (..., µkl

j , ...)⊤
j∈IL

i
∈ R|IL

i |, the following lemma
bounds the LVF estimation error.

Lemma 7: Under Assumptions 1, 3-5, by implementing
Algorithm 1, the following inequalities hold for any l ∈ C
and i ∈ Vl:

|E[nlµ
kl
i (Tc)]− Ĵi(θ

k + δuk)| ≤ Ei, (20)

Eξk∼H

[[
nlµ

kl
i (Tc)

]2] ≤ Bµ
l , (21)

where Ei = ρTc

l n2
l (Ju − Jl + γTeJ0) + n2

l γ
TeJ0, Bµ

l =

n2
l

(
σ2
0 + (1 + γTe)2J2

0

)
, σ0 = maxi∈V σi.

The following lemma bounds the variance of the zeroth-
order oracle (17).

Lemma 8: Under Assumptions 1, 3-5, for any i ∈ Vl, it
holds that E[∥gi(θk, uk, ξk)∥2] ≤ Bµ

l di

δ2 .
Remark 3: (Low Gradient Estimation Variance Induced by

LVFs) Lemma 8 shows that the variance of each local zeroth-
order oracle is mainly associated with nl in Bµ

l , which is the
number of agents involved in the LVF for the l-th cluster. If the
policy evaluation is based on the global reward, the bound of
E[∥gi(θk, uk, ξk)∥2] will be N2Bµ

l di

n2
l δ

2 . When the network is of a
large scale, N may be significantly larger than nl. As a result,
the variance of the zeroth-order oracle is much higher than
that in our case. Therefore, our algorithm has a significantly
improved scalability to large-scale networks.

Theorem 1: Under Assumptions 1-5, let δ = ϵ
L
√
d

, η =
ϵ1.5

d1.5
√
K

. The following statements hold:
(i). |Jδ(θ)− J(θ)| ≤ ϵ for any θ ∈ Rd.
(ii). By implementing Algorithm 1, if

K ≥ d3B2

ϵ5
, Te ≥ logγ

ϵ1.5

2
√
2n2

0LdJ0
,

Tc ≥ logρ0

ϵ1.5

2
√
2n2

0Ld(Ju − Jl + J0)
,

(22)

then
1

K

K−1∑
k=0

E[∥∇θJ
δ(θk)∥2] ≤ ϵ, (23)

where B = 2(NJu − Jδ(θ0)) + L4n2
0(σ

2
0 + (1 + γTe)2J2

0 ),
ρ0 = maxl∈C ρl.

Remark 4: (Optimality Analysis) Theorem 1 (ii) implies
the convergence to a stationary point of Jδ(θ), which is
the smoothed value function10. When the MARL problem
satisfies “gradient domination” and the policy parameterization
is complete, a stationary point will always be the global
optimum [41], [42]. Note that our formulation is general and
contains the cases that do not satisfy gradient domination. For
example, as a special case of our formulation, the linear opti-
mal distributed control problem has many undesired stationary
points [43].

Remark 5: (Sample Complexity Analysis) According to
Theorem 1, the sample complexity of Algorithm 1 is O(

n4
0J

4
0

ϵ5 ),
which is worse than other ZOO-based algorithms in [44, Table

10The reason why we do not analyze the stationary point of J(θ) is that
we did not assume J(θ) to be differentiable. Since Jδ(θ) is close to J(θ) (as
shown in Theorem 1 (i)), an optimal policy for Jδ(θ) will be a near-optimal
policy for J(θ). If we further assume J(θ) to have a Lipschitz continuous
gradient, then the error of convergence to a stationary point of J(θ) can be
obtained by quantifying the error between ∇θJ

δ(θ) and ∇θJ(θ).
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1], which is mainly caused by the use of one-point zeroth-
order oracles and the mild assumption (non-smoothness and
nonconvexity) on the value function. In Section VI, we will
provide analysis on the advantage of using two-point zeroth-
order oracles. Note that the lower bounds of K, Te and Tc are
all positively associated with n0, which is the maximal number
of agents involved in one LVF. According to the definition
of IL

i in (8), nl is determined by the length of the path
starting from cluster l in graph GSO. This implies that the
convergence rate depends on the maximal length of a path
in GSO and having shorter paths is beneficial for improving
sample efficiency and enhancing the convergence rate.

When Assumption 1 is invalid, Lemmas 7 and 8, and The-
orem 1 still hold. However, the LVF-based method becomes
a GVF-based method and no longer exhibits advantages. In
this case, there is only one cluster and each path achieves its
maximum length, then the distributed RL algorithm becomes
centralized and the sample complexity reaches maximum.

V. DISTRIBUTED RL VIA TRUNCATED LOCAL VALUE

FUNCTIONS

Even if Assumption 1 holds, the sample complexity of
Algorithm 1 may still be high due to the large size of some
SCC or some long paths in GSO. In this section, motivated
by [8], we resolve this issue by further dividing large size
SCCs into smaller size SCCs (clusters) and ignoring agents
that are far away when designing the LVF for each cluster in
the graph. For each cluster, the approximation error turns out
to be dependent on the distance between ignored agents and
this cluster. Different from [8], where each agent neglects the
effects of other agents that are far away, our design aims to
make each cluster neglect its effects on other agents that are
far away. Moreover, in our setting, the agents in each cluster
estimate their common LVF value via local consensus, whereas
in [8], each agent has its unique LVF, and it was not mentioned
how this value can be obtained.

A. Truncated Local Value Function Design

Different from the aforementioned SCC-based clustering for
GSO, now we artificially give a clustering V = ∪n

l=1Vl, where
Vl1 ∩ Vl2 = ∅ for distinct l1, l2 ≤ n, Vl still corresponds to
a SCC in GSO. However, each cluster may no longer be a
maximum SCC. That is, multiple clusters may form a larger
SCC of GSO.

Next we define a distance function D(i, j) to describe how
many steps are needed for the action of agent i to affect
another agent j ∈ IL

i . According to Lemma 1 (i), when
(j, i) ∈ EL, there is always a path from i to j in GSOR. Let

P (i, j) be the length of the shortest path 11 from vertex i to
vertex j in graph GSOR. The distance function is defined as

D(i, j) =


0, i = j,

P (i, j), (j, i) ∈ EL,
∞, (j, i) /∈ EL.

(24)

We clarify the following facts regarding D(i, j). (i). It may
happen that there is a path from i to j in GSOR but (j, i) /∈ EL,
see Fig. 3 as an example. Therefore, to exclude j /∈ IL

i , we
artificially defined D(i, j) instead of using P (i, j) directly to
characterize the inter-agent distance. (ii). The distance function
D(i, j) defined here is unidirectional and does not satisfy
the symmetry property of the distance in metric space. (iii).
Although the artificial SCC clustering is obtained from GSO,
the path length P (i, j) is calculated via graph GSOR because
it always contains all the edges from i to any j ∈ IL

i . If GSO

is used instead, some agent in IR
j , j ∈ IL

i may be missing.

We further define the distance from a cluster l to an
agent j as D(Vl, j) = mini∈Vl

D(i, j). Denote by D∗
l =

maxj∈V D(Vl, j) the maximum distance from cluster l to any
agent out of this cluster that can be affected by cluster l. Since
we have defined nl = |Icl

l |, it is observed that D∗
l = nl−|Vl|.

Given a cluster l ∈ C, for any agent i ∈ Vl, we define the
following TLVF:

J̃δ
i (θ) =

{ ∑
j∈IL

i
Jδ
j (θ), κ ≥ D∗

l ,∑
j∈Vκ

l
Jδ
j (θ), κ < D∗

l ,
(25)

where Vκ
l = {j ∈ V : D(Vl, j) ≤ κ} is the set of agents

involved in the TLVF of cluster l, κ ∈ N+ is a pre-specified
truncation index describing the maximum distance from each
cluster l within which the agents are taken into account in the
TLVF of cluster l. Similarly, we define J̃i(θ) =

∑
j∈IL

i
Jj(θ)

if κ ≥ D∗
l , and J̃i(θ) =

∑
j∈Vκ

l
Jj(θ) otherwise, W̃i(θ) =∑

j∈IL
i
Wj(θ) if κ ≥ D∗

l , and W̃i(θ) =
∑

j∈Vκ
l
Wj(θ)

otherwise.

The following lemma bounds the error between the local
gradients of the TLVF and the GVF.

Lemma 9: Under Assumption 2, given cluster l and agent
i ∈ Vl, the following bound holds for J̃δ

i (θ):

∥∇θi J̃
δ
i (θ)−∇θiJ

δ(θ)∥ ≤ γκ+1
∑
j∈V̄κ

l

Lj

√
ddi, (26)

where V̄κ
l = {j ∈ V : κ < D(Vl, j) < ∞} = Vl \ Vκ

l .

Lemma 9 implies that the error between ∇θi J̃
δ
i (θ) and

∇θiJ
δ(θ) exponentially decays with the exponent κ. There-

fore, when γκ+1 is sufficiently small, by employing ∇θi J̃
δ
i (θ)

11The length of a path refers to the number of edges included in this path.
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in the gradient ascent algorithm, the induced error should be
acceptable. This is the fundamental idea of our approach. In
next subsection, we will propose the detailed algorithm design
and convergence analysis.

B. Distributed RL with Convergence Analysis

Next we design a distributed RL algorithm based on the
TLVF. It suffices to redesign the communication weights, so
that the value of J̃δ

i (θ) (instead of Ĵδ
i (θ)) can be estimated

for each agent i ∈ V . For any cluster l ∈ C, instead of using
Icl
l , we set the index set of agents involved in the LVF as

Iκ
l = Icl

l ∩ Vκ
l .

Define the number of agents involved in each TLVF as

nκ
l =

{
nl, κ ≥ D∗

l ,

|Vl|+ κ, κ < D∗
l .

(27)

Recall that D∗
l = nl − |Vl|, it always holds that nκ

l ≤ nl.
The l-th communication weight matrix is then redesigned

as

Cl,κ
ij

{
> 0, if i, j ∈ Iκ

l , (i, j) ∈ EC ;

= 0, otherwise,
l ∈ C, (28)

where C = {1, ..., n}.
Similar to Assumptions 3 and 4, we make the following two

assumptions.
Assumption 6: The communication graph GC is undirected,

and the agents specified by Iκ
l form a connected component

of GC for all l ∈ C.
Assumption 7: Cl,κ is doubly stochastic for all l ∈ C.
Note that Assumption 6 is milder than Assumption 3

because Iκ
l ⊆ Icl

l , implying that fewer communication links
are needed when the TLVF method is employed. Moreover,
when the communication graph GC is available, κ can be
designed to meet Assumption 7 .

The distributed RL algorithm based on TLVFs can be ob-
tained by simply replacing the communication weight matrices
Cl with Cl,κ, for all l ∈ C.

Similar to Lemmas 6, 7 and 8, we have the following results.
Lemma 10: Under Assumption 5, the following holds for

all l ∈ C and i ∈ Vl:

|J̃i(θ)− E[W̃i(θ, ξ)]| ≤ nκ
l γ

TeJ0. (29)

Lemma 11: Under Assumptions 1, 5-7, by implementing
Algorithm 1, the following inequalities hold for any l ∈ C and
i ∈ Vl:

|E[nlµ
kl
i (Tc)]− J̃i(θ

k + δuk)| ≤ Eκ
i , (30)

Eξk∼H

[[
nlµ

kl
i (Tc)

]2] ≤ Bκ
l , (31)

where Eκ
i = (ρκl )

Tc(nκ
l )

2
(
Ju − Jl + γTeJ0

)
+ (nκ

l )
2γTeJ0,

Bκ
l = (nκ

l )
2(σ2

0 + (1 + γTe)2J2
0 ), σ0 = maxi∈V σi, ρκl =

∥Cl,κ
0 − 1

nκ
l
1nκ

l
1⊤
nκ
l
∥.

Lemma 12: Under Assumptions 1, 5-7, for any i ∈ Vl, it
holds that E[∥gi(θk, uk, ξk)∥2] ≤ Bκ

l di

δ2 .

Theorem 2: Under Assumptions 1, 2, 5-7, let δ = ϵ
L
√
d

,

η = ϵ1.5

d1.5
√
K

. The following statements hold:

(i). |Jδ(θ)− J(θ)| ≤ ϵ for any θ ∈ Rd.

(ii). By implementing Algorithm 1, if

K ≥ d3B2

ϵ5
, Te ≥ logγ

ϵ1.5

4(nκ
0 )

2LdJ0
,

Tc ≥ logρ0

ϵ1.5

4(nκ
0 )

2Ld(Ju − Jl + J0)
,

(32)

then

1

K

K−1∑
k=0

E[∥∇θJ
δ(θk)∥2] ≤ ϵ+γκ+1 max

l∈C
|V̄κ

l |L0

√
dd0, (33)

where B = 2(NJu−Jδ(θ0))+ (nκ
0 )

2(σ2
0 +(1+ γTe)2J2

0 )L
4,

nκ
0 = maxl∈C n

κ
l .

Remark 6: (Sample Complexity Analysis) The sample
complexity provided in Theorem 2 is associated with nκ

0 ,
which may be significantly smaller than n0 (depending on the
choice of κ) in Theorem 1. On the other hand, the convergence
error in Theorem 2 has an extra term associated with γκ+1.
Therefore, there is a trade-off when we choose κ. The greater
κ is, the smaller the convergence error will be, however,
the convergence rate may be decreased. For example, when
γ = 0.6, we have γκ+1 ≤ 0.028 if κ ≥ 6. In this case, we
can choose κ = 6, implying that each cluster only consider
its effects on 6 agents other than this cluster even when GSO

is strongly connected. Therefore, when the network is of a
huge scale with long paths in graph GSO, using the TLVFs
can further reduce the sample complexity.

VI. VARIANCE REDUCTION BY TWO-POINT

ZEROTH-ORDER ORACLES

The two distributed RL algorithms proposed in the last
two sections are based on the one-point zeroth-order oracle
(17). We observe that Algorithm 1 is always efficient as
long as g(θk, uk, ξk) is an unbiased estimate of ∇θJ

δ(θk)

and E[∥g(θk, uk, ξk)∥2] is bounded. Therefore, the two-point
feedback oracles proposed in [36] and the residual feedback
oracle in [44] can also be employed in Algorithm 1. In this
section, we will give a brief analysis on how the two-point
zeroth-order oracle further reduces the gradient estimation
variance.
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Based on the LVF design in our work, the two-point
feedback oracle for each agent i at learning episode k can
be obtained as

ḡi(θ
k, uk, ξk) =

µkli
i (Tc)− νklii (Tc)

δ
nliu

k
i , (34)

where νklii (Tc) is the approximate estimation of
Ŵi(θ

k, ζk)/nli via local consensus.
Define L̂i =

∑
j∈IL

i
Li, which is a Lipschitz constant of

Ŵi. Then we can show (35), where ξ = (ξ1, ..., ξN )⊤ and
ζ = (ζ1, ..., ζN )⊤ are the noises in the observations Wi(θ

k +

δuk, ξki ) and Wi(θ
k, ζk), respectively, i.e., Wi(θ

k+δuk, ξki ) =

E[Wi(θ
k+δuk, ξki )]+ξi, Wi(θ

k, ζk) = E[Wi(θ
k, ζk)]+ζi; the

first inequality used the bound Ei in (20) and the assumptions
E[ξi] = E[ζi] = 0 and E[ξ2i ] ≤ σ0, i ∈ V .

Comparisons with one-point feedback. Note that Ei in
(20) can be arbitrarily small as long as Te and Tc are
sufficiently large. Let us first consider the ideal case where the
consensus estimation is perfect Tc = ∞ and the observation
is exact, i.e., Wi = E[Wi] = Ji (Te = ∞ and ξ = 0),
then Ei = 0 and σ0 = 0. As a result, the upper bound of
E[∥ḡi(θk, uk, ξk)∥2] is independent of δ, whereas the upper
bound of E[∥gi(θk, uk, ξk)∥2] becomes n2

l J
2
0di/δ

2, as shown
in Lemma 8. This implies that the variance of the two-point
zeroth-order oracle is independent of the reward value and the
maximum path length n0, thus is more scalable than the one-
point feedback. Now we consider a more practical scenario
where both the consensus estimations and the observations
are inexact. For convenience of analysis, we consider δ > 0

as an infinitesimal quantity and neglect terms in the upper
bounds independent of the network scale. Then we have
E[∥ḡi(θk, uk, ξk)∥2] = O(nldi/δ

2). In Lemma 8, we showed
that the variance bound for the zeroth-order oracle with one-
point feedback is O(n2

l di/δ
2). Therefore, when δ > 0 is small

enough, the two-point zeroth-order oracle still outperforms the
one-point feedback scheme in terms of lower variance and
faster convergence speed.

VII. SIMULATION RESULTS

In this section, we present two examples, where the first
one shows the results of applying Algorithm 1 with the
communication weight matrices (15) to the resource allocation
problem in Example 1, and the second one shows the results of
applying Algorithm 1 with the communication weight matrices
(28) to a large-scale network scenario.

Example 2: We employ the distributed RL with LVFs
in (10) to solve the problem in Example 1. To seek the
optimal policy πi(oi) for agent i to determine its action

{bij}j∈NS+
i

, we adopt the following parameterization for the
policy function:

bij =
exp(−zij)∑

j∈Ii
exp(−zij)

, (36)

where zij is approximated by radial basis functions:

zij =

nc∑
k=1

∥oi − cik∥2θij(k), (37)

cik = (ĉ⊤ik, c̄ik) ∈ R|IO
i |+1 is the center of the k-th feature

for agent i, here ĉik ∈ R|IO
i | and c̄ik are set according to the

ranges of mIi and di, respectively, such that cik, k = 1, ..., nc

are approximately evenly distributed in the range of oi.

Set mi(0) = 1 + χi for all i = 1, ..., 9, χi and wi are both
set as random variables following the Guassian distribution
with mean 0 amd variance 0.01 truncated to [−0.01, 0.01], the
number of evolution steps Te = 10, and the number of learning
epochs K = 1500, yi(t) − di(t) = 0.5 sin t. The commu-
nication graph GC = (V, EC) is set as GC = GSO ∪ G⊤

SO,
which satisfies Assumption 3. Let GC be the 0-1weighted
matrix of graph GC , that is, GC(i, j) = 1 if (i, j) ∈ EC and
GC(i, j) = 0 otherwise. Let dCi =

∑
(j,i)∈EC

GC(i, j). The
communication weights are set as Metropolis weights [45]:

Cl
ij =



1

1 + max{dCi , dCj }
, if i ̸= j, i, j ∈ Icl

l , (i, j) ∈ EC ;

1−
∑
j ̸=i

Cl
ij , if i = j;

0, otherwise,
(38)

where l ∈ C.

By further setting the consensus iteration number Tc = 10,
η = 0.01, and δ = 2, Fig. 5 (left) depicts the evolution of
the observed values of the GVF by implementing 4 different
RL algorithms. The two boundaries of the shaded area are
obtained by running each RL algorithm for 10 times and
taking the upper bound and lower bound of W (θk, ξ∗) in each
learning episode. Here ξ∗ denotes the specific noise gener-
ated in the simulation, and is different in different learning
processes. In each time of implementation, one perturbation
vector uk is sampled and used for all the 4 algorithms
during each learning episode k. The centralized algorithm
is the zeroth-order optimization algorithm based on global
value evaluation, while the distributed algorithm is based on
local value evaluation (Algorithm 1). The distributed two-point
feedback algorithm is Algorithm 1 with gi(θ

k, uk, ξk) replaced
by ḡi(θ

k, uk, ξk) in (34). We observe that the distributed
algorithms are always faster than the centralized algorithms.
Fig. 5 (middle) and Fig. 5 (right) show the comparison
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E[∥ḡi(θk, uk, ξk)∥2] = E[∥ Ĵi(θ
k + δuk)− Ĵi(θ

k) + nliµ
kli
i (Tc)− Ĵi(θ

k + δuk) + Ĵi(θ
k)− nliν

kli
i (Tc)

δ
uk
i ∥2]

= E[∥
Ĵi(θ

k + δuk)− Ĵi(θ
k) + E[nliµ

kli
i (Tc)]− Ĵi(θ

k + δuk) + Ĵi(θ
k)− E[nliν

kli
i (Tc)] +

∑
j∈IL

i
(ξkj − ζkj )

δ
uk
i ∥2]

≤ 2E[L̂2
i ∥uk∥2∥uk

i ∥2] + 2
(
(2Ei)

2 + 2nlσ
2
0

)
E[∥uk

i ∥2/δ2]

≤ 2L̂2
i

E[∥ui∥4] + E[
∑

j∈V\{i}

∥uj∥2]E[∥ui∥2]

+ 4(2E2
i + nlσ

2
0)di/δ

2

≤ 2L̂2
i

(
(di + 4)2 + (d− di)di

)
+ 4(2E2

i + nlσ
2
0)di/δ

2

= 2L̂2
i (did+ 8di + 16) + 4(2E2

i + nlσ
2
0)di/δ

2,

(35)

of centralized and distributed one-point feedback algorithms,
and the comparison of centralized and distributed two-point
feedback algorithms, respectively. From these two figures, it
is clear that the distributed algorithms always exhibit lower
variances in contrast to the centralized algorithms. This implies
that policy evaluation based on LVFs is more robust than that
based on the GVF.

Example 3: Next, in a setting similar to Example 1, we
consider an extendable example with N warehouses. By
regarding 1 and N + 1 as the same warehouse, we set

ES = EO = {(i, j) ∈ V2 : |i− j| = 1, i = 2k − 1, k ∈ N}.

The reward graph is set as GR = G⊤
S . According to the

definitions introduced in Subsection III-A, we have IL
i =

{i, i+ 1, i+ 2, i− 1, i− 2} if i is odd, IL
i = {i, i+ 1, i− 1}

if i is even, for all i ∈ V .

The communication graph GC = (V, EC) is set as GC = GL,
implying that each agent can estimate its LVF value without
using the local consensus algorithm. The learning iteration step
is set as η = 0.05. Other parameter settings are the same
as those in Example 2. By implementing four different RL
algorithms, Fig. 6 shows the results for N = 20, N = 40,
and N = 80, respectively. Observe that the convergence time
for distributed algorithms remain almost invariant for net-
works with different scales, whereas the centralized algorithms
converge much slower when the network scale is increased.
Moreover, the two-point oracle always outperforms the one-
point oracle in terms of lower variance and faster convergence.
These observations are consistent with our analysis in Remark
2 and Section VI.

Example 4: Now we consider N = 100 warehouses with
connected undirected state graph and observation graph,

ES = EO = {(i, j) ∈ V2 : |i− j| = 1},

where warehouse 1 is also viewed as warehouse N + 1.
The edge set of graph GR = (V, ER) is set as ER = ∅,

implying that the individual reward of each agent only depends
on its own state and action. In this case, the learning graph GL

is complete because i
ESO−→ j for any i, j ∈ V . Then Algorithm

1 with the LVF setting in (10) becomes a centralized algorithm.
Hence, we employ the TLVF defined in (25). The communica-
tion graph is set as GC = GS . By setting Vl = {4l−3, ..., 4l},
l = 1, ..., 25, and choosing same parameters mi(0), Te, zi(t)
as those in Example 2, the simulation results for κ = 0, 1
and 2 are shown in Fig. 7. We observe that the distributed RL
algorithm with κ = 0 gains the lowest variance and fastest
convergence rate. This means that in this example, the TLVF
approximation error does not harm the improved performance
of our RL algorithm. Moreover, the smaller κ is, the faster
the algorithm converges, which is consistent with the analysis
in Remark 6. Note that according to the analysis in Example
3, each cluster corresponds to one agent, and the maximum
distance between a cluster i and an agent affected by this
cluster is 2 (in GSOR). Therefore, we only considered cases
with κ ≤ 2.

VIII. CONCLUSIONS

We have recognized three graphs inherently embedded in
MARL, namely, the state graph, observation graph, and reward
graph. A connection between these three graphs and the
learning graph was established, based on which we proposed
our distributed RL algorithm via LVFs and derived conditions
on the communication graph required in RL. It was shown
that the LVFs constructed based on the aforementioned 3
graphs are able to play the same role as the GVF in gradient
estimation. To adapt our algorithm to MARL with general
graphs, we have designed TLVFs associated with an artifi-
cially specified index. The choice of this index is a trade-off
between variance reduction and gradient approximation errors.
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Fig. 5. (Left) Comparison of different algorithms for 9 warehouses; (Middle) centralized and distributed algorithms under zeroth-order oracles with one-
point feedback; (Right) centralized and distributed algorithms under zeroth-order oracles with two-point feedback. The observed GVF value W (θk, ξ∗) =∑

i∈V Wi(θ
k, ξ∗i ) is employed as the performance metric. The boundaries of the shaded area are obtained by running each RL algorithm for 10 times and

taking the upper bound and lower bound of W (θk, ξ∗) in each learning episode.
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Fig. 6. Comparison of different RL algorithms for Example 3 with N = 20, N = 40, and N = 80, respectively.

 

 

 

 

 

 

 

Fig. 7. Comparison of Algorithm 1 based on TLVFs with κ = 0, 1, and 2,
respectively, for Example 4.

Simulation examples have shown that our proposed algorithms
with LVFs or TLVFs significantly outperform RL algorithms
based on GVF, especially for large-scale MARL problems.

The RL algorithms proposed in this work are policy gradient
algorithms based on ZOO, which are general, but may be not
the best choice for specific applications. In the future, we are
interested in exploring how our graph-theoretic approach can
be combined with other RL techniques to facilitate learning
for large-scale network systems.

IX. APPENDIX A: PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 1. (i). Suppose that IL
i = V for all i ∈ V .

Since GSOR has n > 1 SCCs, there must exist distinct i, j ∈ V
such that j is not reachable from i in GSOR. However, IL

i =

V implies that there exists k ∈ V such that j ∈ IR+
k , and

k ∈ RSO
i , implying that j is reachable from i in GSO ∪ GR,

which is a contradiction.

(ii). Suppose GSO only has 1 SCC. According to (6),
RSO

i = V for any i ∈ V . This implies that IL
i = V for

any i ∈ V , which contradicts with Assumption 1. ■

Proof of Lemma 2. Define

J̄i(θ) = J(θ)− Ĵi(θ) =
∑

j∈V\IL
i

Es0∼DV
π(θ)
j (s0). (39)

Next we show that J̄i(θ) is independent of θi.

Let RSO−
i = {j ∈ V : j

ESO−→ i} ∪ {i} be the set of vertices
in graph GSO that can reach i and vertex i. Note that for each
agent j, its action at time t, i.e., aj(t), is only affected by the
partial observation oj(t), the current state sj(t), and policy
θj . Therefore, there exists a function fj : Oj ×Rdj → P (Aj)
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such that

aj(t) ∼ fj(oj(t), θj) = fj({sk(t)}k∈IO
j
, θj). (40)

Similarly, according to the definition of Pi, there exists
another function hj : Πk∈IS

j
Sk × Πk∈IS

j
Ak → P (Sj) such

that
sj(t) ∼ hj({sk(t− 1)}k∈IS

j
, {ak(t− 1)}k∈IS

j
), (41)

together with (40), we have

sj(t) ∼ hj({sk(t− 1)}k∈ISO
j

, {θl}l∈IS
j
), (42)

and

aj(t) ∼ fj({hk({sl1(t− 1)}l1∈ISO
k

, {θl2}l2∈IS
k
)}k∈IO

j
, θj),

(43)

where ISO
j = IS

j ∪ IO
j .

According to (42) and (43), we conclude that {sj(t), aj(t)}
is affected by θl only if l ∈ RSO−

j . As a re-
sult, {sk(t), ak(t)}k∈IR

j
is affected by θl only if l ∈

∪k∈IR
j
RSO−

k ≜ Aj .
Next we show once j /∈ IL

i , it must hold that i /∈ Aj , i.e.,
θi will not affect {sk(t), ak(t)}k∈IR

j
. By the definition in (8),

j /∈ IL
i implies that IR

j ∩ RSO
i = ∅. That is, there are no

vertices in IR
j that are reachable from vertex i in graph GSO.

As a result, i /∈ Aj .
Then we conclude that θi never influences

rj(sIR
i
(t), aIR

i
(t)) for any t ≥ 0 if j /∈ IL

i . Therefore,
J̄i(θ) is independent of θi.

Proof for (i): it has been shown in [36] that

∇θJ
δ(θ) =

1

δφ

∫
Rd

J(θ + δu)e−
1
2
∥u∥2udu, (44)

where φ =
∫
Rd e

− 1
2∥u∥

2

du. Define

Φi = (0di×d1 , ..., Idi , ...,0di×dN ) ∈ Rdi×d, (45)

then ui = Φiu. It follows that

∇θiJ
δ(θ) = Φi∇θJ

δ(θ)

=
1

δφ

∫
Rd

J(θ + δu)e−
1
2
∥u∥2uidu

=
1

δφ

∫
Rd

Ĵi(θ + δu)e−
1
2
∥u∥2uidu (46)

+
1

δφ

∫
Rd

J̄i(θ + δu)e−
1
2
∥u∥2uidu.

Let θ̄i = (..., θ⊤j , ...)
⊤
j ̸=i ∈ Rd−di , ūi = (..., u⊤

j , ...)
⊤
j ̸=i ∈

Rd−di . Since we have proved that J̄i(θ + δu) is independent
of ui, the following holds:∫

Rd

J̄i(θ + δu)e−
1
2∥u∥

2

uidu

=

∫
Rd−di

J̄i(θ̄i + δūi)e
− 1

2∥ūi∥2

dūi

∫
Rdi

e−
1
2∥ui∥2

uidui = 0.

Therefore,

∇θiJ
δ(θ) =

1

δφ

∫
Rd

Ĵi(θ + δu)e−
1
2
∥u∥2uidu = ∇θi Ĵ

δ
i (θ). (47)

Proof for (ii): differentiability of Ji(θ) for all i ∈ V implies
that Ĵi(θ) for all i ∈ V and J(θ) are differentiable as well.
Since J̄i(θ) is independent of θi, we have

∇θiJ(θ) = ∇θi(Ĵi(θ) + J̄i(θ)) = ∇θi Ĵi(θ). (48)

This completes the proof. ■

Proof of Lemma 5. Given any policy π(θ), it holds that

∞∑
t=0

γtri(si(t), ai(t)) ≤
∞∑
t=0

γtru =
1

1− γ
ru ≜ Ju. (49)

Similarly, it can be shown that Jl = 1
1−γ rl. ■

Proof of Lemma 6. From the definition of Ji(θ) and
Wi(θ, ξi), we have

|Ji(θ)− E[Wi(θ, ξ)]| =

∣∣∣∣∣E
[

∞∑
t=Te

γtri(si(t), ai(t))

]∣∣∣∣∣
≤

∞∑
t=Te

γtr0 =
γTe

1− γ
r0.

(50)

Then we have

|Ĵi(θ)− E[Ŵi(θ, ξ)]| ≤
∑
j∈IL

i

|Jj(θ)− E[Wj(θ, ξ)]| ≤
nlγ

Te

1− γ
r0.

The proof is completed. ■

Proof of Lemma 7. Note that the following holds for any
step v:∑
j∈IL

i

µkl
j (v + 1) = 1⊤

nl
µkl(v + 1) = 1⊤

nl
Cl

0µ
kl(v) = 1⊤

nl
µkl(v),

(51)

where the last equality holds because Cl
0 is doubly stochastic.

It follows that 1⊤
nl
µkl(v) = Ŵi(θ

k + δuk, ξki ) for any v ∈
[0, Tc].

Next we evaluate the estimation error. The following holds:

nlµ
kl(v)− 1nlŴi(θ

k + δuk, ξki )

= nlµ
kl(v)− 1nl1

⊤
nl
µkl(v)

= nlC
l
0µ

kl(v − 1)− 1nl1
⊤
nl
µkl(v − 1)

= (Cl
0 −

1

nl
1nl1

⊤
nl
)(nlµ

kl(v − 1)− 1nl1
⊤
nl
µkl(v − 1))

= (Cl
0 −

1

nl
1nl1

⊤
nl
)v(nlµ

kl(0)− 1nl1
⊤
nl
µkl(0))

= (Cl
0 −

1

nl
1nl1

⊤
nl
)v(nlµ

kl(0)− 1nlŴi(θ
k + δuk, ξki )),

(52)

where the second equality used (51) and the third equality
holds because (Cl

0 − 1
nl
1nl

1⊤
nl
)1nl

1⊤
nl
µkl(t) = 0.
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As a result, for any v ∈ [0, Tc], we have∥∥∥E [
nlµ

kl(v)
]
− 1nl

Ĵi(θ
k + δuk)

∥∥∥
≤

∥∥∥E [
nlµ

kl(v)− 1nl
Ŵi(θ

k + δuk, ξki )
]∥∥∥

+
∥∥∥1nl

Ĵi(θ
k + δuk)− E

[
1nl

Ŵi(θ
k + δuk, ξki )

]∥∥∥
≤ ρvl

∥∥∥E [
nlµ

kl(0)− 1nl
Ŵi(θ

k + δuk, ξki )
]∥∥∥+ n2

l γ
TeJ0

≤ ρvl

∥∥∥E [
nlµ

kl(0)− 1nl
Ĵi(θ

k + δuk)
]∥∥∥+ (ρvl + 1)n2

l γ
TeJ0

≤ ρvl n
2
l (Ju − Jl) + (ρvl + 1)n2

l γ
TeJ0

= ρvl n
2
l

(
Ju − Jl + γTeJ0

)
+ n2

l γ
TeJ0, (53)

where the second inequality used (52) and Lemma 6, the
third inequality used Lemma 6 again, and the last inequality
used the uniform bound of Ji and the fact that E[µkl

i (0)] =

E[Wi(θ
k + δuk, ξki )] ≤ Jδ

i (θ
k).

Due to Assumption 4, we have minj∈IL
i
Wj(θ

k +

δuk, ξki ) ≤ µkl
i (Tc) ≤ maxj∈IL

i
Wj(θ

k + δuk, ξki ). Let
i0 = argmaxj∈IL

i
|Wj(θ

k + δuk, ξki )|. Then we have

Eξk∼H

[[
nlµ

kl
i (Tc)

]2] ≤ n2
lEξk∼H

[
W 2

i0(θ
k + δuk, ξk)

]
= n2

lEξk∼H[(ξki0)
2] + n2

l (Eξk∼H[Wi0(θ
k + δuk, ξk)])2

≤ n2
l σ

2
0 + n2

l (Ji0(θ
k + δuk) + γTeJ0)

2

≤ n2
l (σ

2
0 + (1 + γTe)2J2

0 ). (54)

The proof is completed. ■

Proof of Lemma 8. According to (17), we have

E[∥gi(θk,uk, ξk)∥2] = 1

δ2
Euk

i

[
Eξk∼H

[(
nlµ

kl
i (Tc)

)2] ∥uk
i ∥2

]
≤

Bµ
l

δ2
E
[
∥uk

i ∥2
]

=
Bµ

l

δ2φ

∫
Rdi

∥uk
i ∥2e−

1
2∥u

k
i ∥

2

duk
i

∫
Rd−di

e−
1
2∥v∥

2

dv

≤
Bµ

l

δ2φ
di

∫
Rdi

e−
1
2∥u

k
i ∥

2

duk
i

∫
Rd−di

e−
1
2∥v∥

2

dv

=
Bµ

l di
δ2

, (55)

where φ is defined in (44), the first inequality
used (21), and the second inequality holds because∫
Rdi

∥uk
i ∥2e−

1
2∥u

k
i ∥

2

duk
i ≤ di

∫
Rdi

e−
1
2∥u

k
i ∥

2

duk
i , which

has been proved in [36, Lemma 1]. ■

Proof of Theorem 1. Statement (i) can be obtained by using
the Lipschitz continuity of J(θ). The details have been shown
in [36, Theorem 1].

Now we prove statement (ii). According to Assumption 2
and [36, Lemma 2], the gradient of Jδ(θ) is

√
dL/r-Lipschitz

continuous. Let g(θk) = (g⊤1 (θ
k), ..., g⊤N (θk))⊤ ∈ Rd, the

following holds:

|Jδ(θk+1)− Jδ(θk)− ⟨∇θJ
δ(θk), ηg(θk)⟩|

≤
√
dL

2r
η2∥g(θk, uk, ξk)∥2, (56)

which implies that

⟨∇θJ
δ(θk), ηg(θk)⟩

≤ Jδ(θk+1)− Jδ(θk) +

√
dL

2r
η2∥g(θk, uk, ξk)∥2. (57)

Lemma 8 implies that

E[∥g(θk, uk, ξk)∥2] =
N∑
i=1

E[∥gi(θk, uk, ξk)∥2]

≤
N∑
i=1

Bµ
l di/δ

2 ≤ Bµ
0 d/δ

2,

(58)

where Bµ
0 = maxl∈C B

µ
l = n2

0(σ
2
0 + (1 + γTe)2J2

0 ).

Moreover, Lemma 7 implies that

E
[
⟨∇θiJ

δ(θk), gi(θ
k, uk, ξk)⟩

]
= E[∥∇θiJ

δ(θk)∥2]

+ E[⟨∇θiJ
δ(θk), nlµ

kl
i (Tc)u

k
i /δ − Ĵi(θ

k + δuk)uk
i /δ⟩]

≥ E[∥∇θiJ(θ
k)∥2]− 1

2
E
[
∥∇θiJ(θ

k)∥2 + E2
i ∥uk

i ∥2/δ2
]

=
1

2
E[∥∇θiJ(θ

k)∥2]− E2
i di
2δ2

, (59)

where the first equality used Lemma 2 and ∇θi Ĵ
δ(θk) =

E[Ĵi(θk + δuk)uk
i /δ], the inequality used (20). Summing (59)

over i from 0 to N yields

E[⟨∇θJ
δ(θk), g(θk, uk, ξk)⟩] ≥ 1

2
E[∥∇θJ(θ

k)∥2]− E2
0d

2δ2
, (60)

where E0 = maxi∈V Ei.

Combining (60) and (57), and taking expectation on both
sides, we obtain

1

2
ηE[∥∇θJ

δ(θk)∥2]− η
E2

0d

2δ2

≤ E[Jδ(θk+1)− Jδ(θk)] +

√
dL

2δ
η2E[∥g(θk, uk, ξk)∥2]

≤ E[Jδ(θk+1)− Jδ(θk)] +
LBµ

0 d
1.5

2δ3
η2, (61)

where the second inequality employed (58).

Note that under the conditions on Tc, we have

E0 ≤
ϵ1.5√
2Ld

. (62)

Summing (61) over k from 0 to K − 1 and dividing both
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sides by K, yields

1

K

K−1∑
k=0

E[∥∇θJ
δ(θk)∥2]

≤ 2

η

[
1

K

(
E[Jδ(θK)]− Jδ(θ0)

)
+

LBµ
0 d
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2δ3
η2

]
+

E2
0d

δ2

≤ 2

η

[
1

K
(NJu − Jδ(θ0)) +Bµ

0

Ld1.5

2δ3
η2

]
+

ϵ

2

≤ d1.5

ϵ1.5
√
K

[
2(NJu − Jδ(θ0)) + L4Bµ

0

]
+

ϵ

2
, (63)

where the second inequality used (62), the last inequality used
the conditions on δ and η. The proof is completed. ■

Proof of Lemma 9. When κ ≥ D∗
l , (25) implies J̃δ

i (θ) =

Ĵδ
i (θ). By Lemma 2, ∥∇θi J̃

δ
i (θ) −∇θiJ

δ(θ)∥ = 0. Next we
analyze the other case.

Let rθi (si(t), ai(t)) be the individual reward of agent i at
time t under the global policy π(θ). Due to Lemma 2, it
suffices to analyze ∥∇θi J̃

δ
i −∇θi Ĵ

δ
i ∥.

Let Jδ
i,κ(θ) =

∑
j∈V̄κ

l

∑κ
t=0 γ

trj(t)(sj(t), aj(t)), and
J̄δ
i,κ(θ) =

∑
j∈V̄κ

l

∑∞
t=κ+1 γ

trj(t)(sj(t), aj(t)). Then

J̃δ
i (θ)− Ĵδ

i (θ) = Jδ
i,κ(θ) + J̄δ

i,κ(θ). (64)

Notice that if D(Vl, j) > κ, then the reward of each agent
j ∈ V̄κ

l is not affected by cluster Vl at any time step t ≤
κ. Therefore, ∇θiJ

δ
i,κ(θ) = 0, which leads to (65), where

the second equality used the two-point feedback zeroth-order
oracle [36], the third equality used the definition of V π(θ)

i (s),
the second inequality used Assumption 2, the third inequality
used Holder’s inequality. The proof is completed. ■

Proof of Theorem 2. Here we only show the different part
compared with the proof of Theorem 1.

E
[
⟨∇θiJ
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k, uk, ξk)⟩
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E[∥∇θiJ(θ

k)∥2]− (Eκ
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− di
δ2
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i , (66)

where Ai = γκ+1
∑

j∈V̄κ
l
Lj

√
ddi, the first equality used

Euk
i
[J̃i(θ

k + δuk)uk
i /δ] = ∇θi J̃i(θ

k) and Euk
i
[Ĵi(θ

k +

δuk)uk
i /δ] = ∇θi Ĵi(θ

k), the inequality used ab ≥ − 1
4a

2− b2.
Then we have

E[⟨∇θJ
δ(θk), g(θk, uk, ξk)⟩] ≥ 1

2
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k)∥2]− (Eκ
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where Eκ
0 = maxi∈V Eκ

i , A0 = maxi∈V Ai =

γκ+1 maxl∈C |V̄κ
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√
dd0.

It follows that
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where Bκ
0 = (nκ

l )
2(σ2

0 + J2
0 ).

Therefore, the following holds:
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(68)

The proof is completed. ■

X. APPENDIX B: PROPERTIES OF CLUSTER-WISE GRAPHS

In this appendix, we will analyze the relationships among
graphs GX , X ∈ {S,O,R,L} from the cluster-wise perspec-
tive.

Inspired by the observations in Subsection III-B, the graph
GL in Fig. 4 can be interpreted from a cluster perspective. By
regarding each cluster12 (corresponding to a maximal SCC in
GSO) as a node, and adding a directional edge (l1, l2) between
any pair of nodes l1, l2 ∈ C as long as there is at least one
edge from cluster l1 to cluster l2 in GL, we define the cluster-
wise graph of GL as the graph Gcl

L in Fig. 8 (a). Similarly,
we define cluster-wise graphs for GSO and GSOR as Gcl

SO and
Gcl
SOR, respectively. In Example 1, due to the setting that there

are no edges between different clusters in GR, it holds that
Gcl
SO = Gcl

SOR, as shown in Fig. 8 (b). Note that GSO ̸= GSOR

since ER ̸⊆ ESO. The cluster-wise graph Gcl for a graph G is
constructed by regarding each cluster as one node, and adding
one edge between two nodes if there is an edge between two
agents belonging to these two clusters in G, respectively. Note
that a SCC in GSO remains to be a SCC in GL and GSOR.
Therefore, an edge from cluster l1 to cluster l2 in Gcl always
implies that any vertex j ∈ Vl2 is reachable from any vertex
i ∈ Vl1 in the corresponding node-wise graph G. Based on
this fact, we give a specific result regarding the relationship
between Gcl

L , Gcl
SO and Gcl

SOR as below.

12Please note that the clustering in this paper is only conducted once for
graph GSO . The clusters discussed in other graphs still correspond to SCCs
in graph GSO .
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∥∇θi J̃
δ
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≤ γκ+1
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(65)

Cluster 1

Cluster 2
Cluster 3 Cluster 4

(a)

Cluster 1

Cluster 2
Cluster 3 Cluster 4

(b)

Fig. 8. (a). The cluster-wise learning graph Gcl
L . (b). The cluster-wise graph

Gcl
SO or Gcl

SOR.

Lemma 13: Given GS , GO, GR and the induced GL, the
following statements are true:

(i) (Ecl
SO)

⊤ ⊆ Ecl
L ⊆ (Ecl

SOR)
⊤;

(ii) (Gcl
SO)

⊤ = Gcl
L = (Gcl

SOR)
⊤ if ER ⊆ ESO;

(iii) (Gcl
SO)

⊤ = Gcl
L = (Gcl

SOR)
⊤ if and only if i

ESO−→ j for
any (i, j) ∈ ER.
Proof. (i). Given (l1, l2) ∈ Ecl

SO, there must hold that i ESO−→ j

for any i ∈ Vl1 and j ∈ Vl2 . Due to the definition of GL, we
have j ∈ IL

i (i.e., (j, i) ∈ EL) for any i ∈ Vl1 and j ∈ Vl2 ,
implying that (l1, l2) ∈ (Ecl

L )⊤. Therefore, Ecl
SO ⊆ (Ecl

L )⊤. It
follows that (Ecl

SO)
⊤ ⊆ Ecl

L .
On the other hand, for any (l1, l2) ∈ Ecl

L , we have (i, j) ∈
EL for some i ∈ Vl1 and j ∈ Vl2 . According to Lemma 3,
j

ESOR−→ i. Hence, (l1, l2) ∈ (Ecl
SOR)

⊤.
(ii). By the virtue of statement (i), it suffices to show that

Gcl
SO = Gcl

SOR if ER ⊆ ESO, which is true due to the definition

of GSOR.
(iii). Sufficiency. The condition implies that the reachability

between any two vertices in GSO is the same as that in GSOR.
Therefore, Ecl

SO = Ecl
SOR.

Necessity. Suppose that there exists an edge (i, j) ∈ ER
such that j is not reachable from i in GSO. Then i and j

must belong to two different clusters l1 and l2, respectively.
It follows that (l1, l2) ∈ ESOR and (l1, l2) /∈ ESO, which
contradicts with Gcl

SO = Gcl
SOR. ■

In the existing literature of MARL, it is common to see the
assumption that IR

i = {i}. In this scenario, ER = ∅ ⊆ ESO,
therefore it always holds that Gcl

L = (Gcl
SO)

⊤ = (Gcl
SOR)

⊤.
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