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Abstract—Achieving distributed reinforcement learning (RL)
for large-scale cooperative multi-agent systems (MASs) is chal-
lenging because: (i) each agent has access to only limited informa-
tion; (ii) issues on scalability and sample efficiency emerge due to
the curse of dimensionality. In this paper, we propose a general
distributed framework for sample efficient cooperative multi-
agent reinforcement learning (MARL) by utilizing the structures
of graphs involved in this problem. We introduce three coupling
graphs describing three types of inter-agent couplings in MARL,
namely, the state graph, observation graph and reward graph.
By further considering a communication graph, we propose two
distributed RL approaches based on local value functions derived
from the coupling graphs. The first approach is able to reduce
sample complexity significantly under specific conditions on the
aforementioned four graphs. The second approach provides an
approximate solution and can be efficient even for problems with
dense coupling graphs. Here there is a trade-off between mini-
mizing the approximation error and reducing the computational
complexity. Simulations show that our RL algorithms have a
significantly improved scalability to large-scale MASs compared
with centralized and consensus-based distributed RL algorithms.

Index Terms—Reinforcement learning, distributed learning,
optimal control, Markov decision process, multi-agent systems

I. INTRODUCTION

Reinforcement Learning (RL) [1] aims to find an optimal
policy for an agent to accomplish a specific task by making
this agent interact with the environment. Although RL has
found wide practical applications such as boarding games [2],
robotics [3], and power systems [4], the problem is much
more complex for multi-agent reinforcement learning (MARL)
due to the non-stationary environment for each agent and
the curse of dimensionality. MARL, therefore, has attracted
increasing attention recently, and has been studied extensively,
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see the survey papers [5]-[7]. Nonetheless, many challenges
still remain to be overcome. In this paper, we focus on dealing
with the following two difficulties in developing distributed co-
operative RL algorithms for large-scale networked multi-agent
systems (MASs): (i) how to deal with inter-agent couplings
all over the network with only local information observable
for each agent; and (ii) how to guarantee scalability of the
designed RL algorithm to large-scale network systems?

The first challenge refers to the fact that an agent cannot
make its decision independently since it will affect and be
affected by other agents in different ways. There are mainly
three types of structure constraints causing inter-agent cou-
plings in MARL' that have been considered in the literature,
e.g., coupled dynamics (transition probability) [8], [9], partial
obselrvability2 [10]-[12], and coupled reward functions [9],
[13]-[15]. The aforementioned references either consider only
one type of structure constraints, or employ only one graph
to characterize different types of structure constraints. To
give a specific example, consider the MAS as a network of
linear systems with dynamics coupling, and set the global
objective function as an accumulated quadratic function of
state and control policy, the problem of learning an optimal
distributed policy becomes a data-driven distributed linear
quadratic regulator (LQR) design problem [16], [17], which
involves all the aforementioned structure constraints. In the
literature, distributed RL algorithms e.g., [17]-[19] have been
proposed to deal with this problem. However, the three types
of structure constraints are yet to be efficiently utilized.
Moreover, the most popular formulation of MARL has long
been known as the Markov games [20], while the multi-agent
LQR problem [16] is only a specific application scenario.

'In the literature, there have been many different settings for the MARL
problem. Our work aims to find a distributed control policy for a dynamic
MAS to cooperatively maximize an accumulated global joint reward function.
In our literature review, a reference is considered as an MARL reference as
long as it employed RL to seek a policy for a group of agents to cooperatively
optimize an accumulated global joint function in a dynamic environment.

ZPartial observability generally means that only incomplete information of
the environment is observed by the learner. In many numerical experiments for
MARL, e.g., [10], [11], partial observation refers to the observation on partial
agents and the environment. In this work, we consider a specific scenario
where each agent only observes partial agents, which is consistent with [12].



The scalability issue, as the second challenge, is resulted
from high dimensions of state and action spaces of MASs.
Although each agent may represent an independent individual,
the inter-agent couplings in the MARL problem make it
difficult for each agent to learn its optimal policy w.r.t. the
global objective with only local information. In the literature
of distributed RL [12], [13], [21], [22], when dealing with
these couplings, the most common method is to make different
agents exchange information with each other via a consensus
algorithm, so that each agent is able to estimate the value
of the global reward function although it only has access to
local information from neighbors. However, the performance
of such distributed RL algorithms will be similar to or even
worse than the centralized RL algorithm because (i) it may
take a long time for convergence of consensus when the
network is of large scale, (ii) essentially the learning process
is conducted via an estimated global reward information. As a
result, consensus-based distributed RL algorithms still suffer
from significant scalability issues in terms of the convergence
rate and the learning variance.

In this paper, we develop distributed scalable algorithms for
a class of cooperative MARL problems where each agent has
its individual state space and action space (similar to [8], [9]),
and all the aforementioned three types of couplings exist. We
consider a general case where the inter-agent state transition
couplings, state observation couplings, and reward couplings
are characterized by three different graphs, namely, state
graph, observation graph, and reward graph, respectively.
Based on these graphs, we derive a learning graph, which
describes the required information flow during the RL process.
The learning graph also provides a guidance for constructing
a local value function (LVF) for each agent, which is able to
play the role of the global value function (GVF)? in learning,
but only involves partial agents, and therefore, can enhance
scalability of the learning algorithm.

When each agent has access to all the information involved
in LVF, distributed RL can be achieved by policy gradient
algorithms immediately. However, this approach is usually
based on interactions between many agents, which requires a
dense communication graph. To further reduce the number of
communication links, we design a distributed RL algorithm
based on local consensus, whose computational complexity
depends on the aforementioned three graphs (see Theorem 1).
Compared with global consensus-based RL algorithms, local
consensus algorithms usually have an improved convergence

3Please note that the abbreviation of “GVF” has been used to denote
“General Value Function” in the literature, e.g., [23]. In this paper, “GVF”
always means global value function.

rate as the network scale is reduced*. This implies that the
scalability of this RL algorithm requires specific conditions
on the graphs embedded in the MARL problem. To relax
the graphical conditions, we further introduce a truncation
index and design a truncated LVF (TLVF), which involves
fewer agents than LVF. While being applicable to MARL
with any graphs, the distributed RL algorithm based on TLVFs
only generates an approximate solution, and the approximation
error depends on the truncation index to be artificially designed
(see Theorem 2). We will show that there is a trade-off
between minimizing the approximation error and reducing the
computational complexity (enhancing the convergence rate).

In [25], we have considered the case when no couplings
exist between the rewards of different individual agents. In
contrast, this paper considers coupled individual rewards,
which further induces a reward graph. Moreover, this paper
provides more interesting graphical results, a distributed RL
algorithm via local consensus, and a TLVF-based distributed
RL framework.

The main novel contributions of our work that add to the
existing literature are summarized as follows.

(i). We consider a general formulation for distributed RL of
networked dynamic agents, where the aforementioned three
types of inter-agent couplings exist in the problem, simul-
taneously. Similar settings have been considered in [8], [9].
The main novelty here is that the three coupling graphs in
this paper are fully independent and inherently exist in the
problem. Based on the three graphs corresponding to three
types of couplings, we derive a learning graph describing
the information flow required in learning. By discussing the
relationship between the learning graph and the three coupling
graphs (see Lemma 13), one can clearly observe how different
types of couplings affect the required information exchange in
learning.

(ii). By employing the learning graph, we construct a LVF
for each agent such that the partial gradient of the LVF w.r.t.
each individual’s policy parameter is exactly the same as that
of the GVF (see Lemma 2), which can be directly employed in
policy gradient algorithms. MARL algorithms based on LVFs
have also been proposed by network-based LVF approximation
[8], [9], [26] and value function decomposition [14], [15],
[27], [28]. However, the network-based LVF approximation

only provided an approximate solution. Moreover, the afore-

4Although the convergence rate of a consensus algorithm depends on not
only the network scale but also the communication weights, typically the
convergence rate can be significantly improved if the network scale is largely
reduced. In [24], the relationship between consensus convergence time and
the number of nodes in the network is analyzed under a specific setting for
the communication weights.



mentioned value function decomposition references always
assumed that all the agents share a common environment state,
therefore never involved the state graph (describing dynamics
couplings between different agents).

(iii). To show the benefits of employing the constructed
LVFs in policy gradient algorithms, we focus on zeroth-
order optimization (ZOO)’. Due to the removal of redundant
information (less agents are involved) in gradient estimation,
our learning framework based on LVFs always exhibits a
reduced gradient estimation variance (see Remark 3) com-
pared with GVF-based policy evaluation. Note that most of
the existing distributed ZOO algorithms [31]-[34] essentially
evaluate policies via the global value.

(iv). To deal with the scenario when the learning graph is
dense, we construct TLVFs by further neglecting the couplings
between agents that are far away in the coupling graph. The
underlying idea is motivated by [8], [9], [26]. Our design,
however, is different from them as they construct a TLVF for
each agent, whereas we deign a TLVF for each cluster.

The rest of this paper is organized as follows. Section
IT describes the MARL formulation and the main goal of
this paper. Section III introduces the LVF design and the
learning graph derivation. Section IV shows the distributed RL
algorithm based on LVFs and local consensus, and provides
convergence analysis. Section V introduces the RL algorithm
based on TLVFs as well as the convergence analysis. Section
VII shows several simulation examples to illustrate the advan-
tages of our proposed algorithms. Section VIII concludes the
paper. Sections IX and X provide theoretical proofs and the
relationships among different cluster-wise graphs, respectively.

Notation: Throughout the paper, unless otherwise stated,
Gx = (V, Ex) always denotes an unweighted directed graph®,
where V = {1, ..., N} is the set of vertices, Ex C V xV is the
set of edges, (4, ) € Ex means that there is a directional edge
in G from 4 to j. The in-neighbor set and out-neighbor set of
agent i are denoted by NX = {j € V : (j,i) € Ex}, and
NXT ={j€V:(i,j) € Ex}, respectively. A path from i to
j is a sequence of distinct edges of the form (i1,142), (i2,13),
v (ip_1,iy) where 4, = i and i, = j. We use i —— j
to denote that there is a path from i to j in edge set £. A
subgraph G’ = (V',&’) with V' C V and & C & is said to

5The ZOO method can be implemented with very limited information (only
the objective function evaluations), therefore has a wide range of applications.
In recent years, the ZOO-based RL algorithms have been shown efficient in
solving model-free optimal control problems, e.g., [17], [29], [30]. Inspired
by these facts, we employ the ZOO-based method to deal with the model-
free optimal distributed control problem of MASs under a very general
formulation.

%In this paper, we will introduce multiple graphs, here X may represent .S,
O, C, R and L.

be a strongly connected component (SCC) if there is a path
between any two vertices in G'. One vertex is a special SCC.
Given a directed graph G = (V, &), we define the franspose
graph of G as G = (V,€"), where £ = {(i,7) € V x
V : (j,i) € £}. Given two edge sets & and &, it can be
verified that & C & if and only if & C &, . Moreover, if
(i,7), (j,4) € &, then (4,7), (j,i) € £'. Given a set A and a
)T with i € A. Given a set X, P(X)
is the set of probability distributions over X. The d x d identity

vector v, v4 = (..., vj, ...

matrix is denoted by I, the a X b zero matrix is denoted by
0,x5. R? is the d-dimensional Euclidean space. N is the set
of non-negative integers.

II. MULTI-AGENT REINFORCEMENT LEARNING

Consider the optimal control problem of a MAS modeled
by a Markov decision process (MDP), which is described as
a tuple M = (Gys.0,r,c}, HievTi, HieyO;, Uieyr;, v) with
Gis,o.rcy = V,E5,0,r,cy) describing different interaction
graphs and 7; = (S;, A;, P;) specifying the evolution process’
of agent ¢. Detailed notation explanations are listed below:

e V={1,...,N} is the set of agent indices;

e & C V x V is the edge set of the state graph Gs =
(V,Es), which specifies the dynamics couplings among
the agents’ states, (i,j) € &g implies that the state
evolution of agent j involves the state of agent ¢;

e &0 C V x V is the edge set of the observation graph
Go = (V,€0), which determines the partial observation
of each agent. More specifically, agent 7 observes the state
of agent j if (j,1) € Eo;

e & C V x V is the edge set of the reward graph
Gr = (V,ER), which describes inter-agent couplings in
the reward of each individual agent, the reward of agent ¢
involves the state and the action of agent j if (j,¢) € Eg;

o & CV x Vis the edge set of the communication graph
Go = (V,&¢c). An edge (i,j) € Ec implies that agent j
is able to receive information from agent ¢;

o S, and A; are the state space and the action space of agent
1, respectively, and can be either continuous or finite;

o Pi i IjersS; x Hjezs A — P(S;) is the transition
probability function specifying the state probability dis-
tribution of agent ¢ at the next time step under current
states {s;};czs and actions {a;};czs, here P ={j €
V:(j,i) € Es} U {i} includes agent 7 and its neighbors
in the state graph Gg;

"The evolution process of each agent depends on other agents, therefore
does not possess the Markov property. However, the whole MAS has the
Markov property as its full state only depends on the state and action at last
step, and is independent of previous states and actions.



o 1i :ILezrS; X Ilerr A; — Riis the immediate reward
returned to agent i when each agent j € ZF takes action
aj € Aj at the current state s; € S;, here ZF = {j €
V:(4,i) € Er} U{i}

o O; = {Iljcz0S;} is the observation space of agent 4,
which includes the states of all the agents in Z, here
IO = {jeV: (i) € Eo} Uik

e v € (0,1) is the discount factor that trades off the
instantaneous and future rewards.

Let § = ey S;, A =1lepAj, and P = Il;cP; denote
the joint state space, action space and transition probability
function of the whole MAS. Each agent ¢ has a state s; € S;
and an action a; € A;. The global state and action at time
step ¢ are denoted by s(t) = (s1(t),...,sn(t)) and a(t) =
(a1(t),...,an(t)), respectively. Let 7 : S — P(A) and 7; :
O; — P(A;) be a global policy function of the MAS and
a local policy function of agent 4, respectively. Here P(.A)
and P(A;) are the sets of probability distributions over A and
A, respectively. The global policy is the policy of the whole
MAS from the centralized perspective, thus is based on the
global state s. The local policy of agent ¢ is based on the
local observation o; = 570 € O;, which constitutes states of
partial agents. Note that a global policy always corresponds
to a collection of local policies uniquely.

At each time step t of the MDP, each agent i € )V executes
an action a;(t) € A; according to its policy 7; and the local
observation 0;(t) = szo(t) € O;, then obtains a reward
ri(szr(t), azr(t)). Note that such a formulation is different
from that in [13], [35], where the transition and reward of
each agent are associated with the global state s(t). Moreover,
different from many MARL references where the reward of
each agent only depends on its own state and action, in our
work, we consider a more general formulation for cooperative
MARL where the reward of each agent may be influenced by
other agents, determined by the reward graph Gr = (V, ER).

The long-term accumulated discounted global reward is
defined as

R= Z yir(s(t),a
t=0

where 7(s(t),a(t)) is the global reward for the MAS at
time ¢, r; is the local reward for agent ¢ at time t. Note

N oo
ZZ'ytn (szr(t),azr(t)), (1)

=1 t=0

that maximizing R is equivalent to maximizing its average
%R, which has been commonly adopted as the learning
objective in many MARL references, e.g. [12], [13], [21].
Based on this long term global reward, with a given policy
m, we are able to define the global state value function
VT(s) = E[> oy r(s(t),a(t))|s(0) = s| and state-action

value function Q7 (s,a) = E[};° v'r(s(t),a(t))]s(0) =
s,a(0) = a], which describe the expected long term global
reward when agents have initial state s and initial state-
action pair (s, a), respectively. Similarly, the local state value
function with initial state s for each agent i can be defined as
Vi (s) = BIS0 1 sz (0),aza (1) 15(0) = ).

The goal of this paper is to design a distributed RL
algorithm for the MAS to find a control policy 7 maximizing

J(m)=E

s~DV7(s), whose expression is

a(t)wﬂ(s @)Y TZ(SIR (t)7a’IiR (t))|8(0) =3,
2

where D denotes the distribution that the initial state follows.
For convenience of analysis, we also define the expected value
to be maximized corresponding to individual reward for each

agent ¢ as

Jz(ﬂ—) = ESND‘/;W(S)vi EV. 3

Note that here J; may be determined by the policies of partial
agents, instead of the global policy m. However, the global
policy 7 is always able to determine .J;, therefore, can be
employed as the argument of J;.

We parameterize the global policy 7 (s, a) using parameters
0 = (60],...0%)" € R? with 9; € R%.
and agent i’s local policy are then rewritten as 7°(s,a)

The global policy

and 7rf i(0;, a;), respectively. Note that given any global state
s € S, a global policy and a collection of local policies can
always be transformed to each other. Now we turn to solve
the following optimization problem:

max J(0) :=EeupV™O(s). 4)

Next we present a distributed multi-warehouse resource
transfer problem to demonstrate our formulation. This example
is a variation of many practical applications, e.g., it can also
be read as a problem of energy transfer among different rooms
in a smart building.

Example [: Consider a network of 9 warehouses V =
{1,...,9} consuming resources while transferring resources
among each other. The goal is to guarantee adequate supplies
for each warehouse. Each warehouse is denoted by a vertex
in the graph. The state graph Gs = (V,Eg) interpreting the
transition relationship is shown in Fig. 1. The observation
graph G only contains 3 edges involving 3 leaf nodes in graph
Gs, as shown in Fig. 1, which implies that only warehouses
2, 3, and 5 observe the current resource stock of warehouses
other than itself. The motivation behind this setting is that
warehouses 1, 4 and 6 do not send out resources at all,



hence their neighbors need to keep monitoring their states
so that the resources sent to them are neither insufficient nor
redundant. The reward graph Gpr is shown in Fig. 2, which
contains Go as a subgraph. This ensures that the observation
of each warehouse always influences its own reward, implying
that a warehouse is responsible for the resource shortage of
those warehouses it can observe. At time step ¢, warehouse
i € V stores resources of the amount m;(t) € R, receives
a local demand d;(t) € R, sends partial of its resources
to and receives resources from its neighbors j € N7 in
the state graph Gg, besides its neighbors, warehouse i also

receives resources supply of the amount y; (¢) from outside. Let
zi(t) = yi(t) —
mi(t + 1) = mz(t) - Z bij(Oi(t))Oéimi(t)
jeNiout
+ ) bjilos(t))agmy () + z(t),
JENE

2i(t) = Ajsin(wit + ¢;) + wy, @)

d;(t), then agent ¢ has the following dynamics

where b;;(0;(t)) € [0,1] denotes the fraction of resources
agent ¢ sends to its neighbor j at time ¢, a;; determines whether
the ¢-th warehouse has resources to send out, ie., a; = 0
if m; <0, and o; = 1 otherwise, 0 < A; < m;(0) is
a constant, w; is a bounded random quantity, ¢ € )V and
# is a positive scalar, N° = {j € V : (j,i) € Es} and
NST ={j€V:(i,j) € Es} are the in-neighbor set and the
out-neighbor set of agent ¢, respectively.

From the MARL perspective, besides the three graphs
and transition dynamics introduced above, the rest of entries
in M for each agent ¢ at time step ¢t can be recognized
as Individual state: s;(t) = (m;(t),2(t))". Individual
action: a;(t) = (""b"j(oi(t))’"')jTeNf*'
function: m;(-) = (..., b;; ("), "')]‘TeNf*' Partial observation:
0i(t) = ({m;(1)}jez0.2:(1)T € RF’I+1. Individual re-
ward: r;(t) = Zjezig 7;(t), where 7;(t) = 0 if m;(t) > 0,

and 7;(t) = —m? (t) otherwise.

Individual policy

The goal of the resource transfer problem is to maximize
Eg0)~D Zfil Yoo ri(t) under the dynamics constraint
(5). In other words, we aim to find the optimal transfer policy
such that each warehouse keeps having enough resources for
use.

Remark 1: Note that many settings in this example can be
adjusted while maintaining the applicability of the proposed

approach in this paper. For example, the partial observation of
T

JjeTP
or 0; = (..., my(t), "')]'TGIO' Depending on different observa-

each agent ¢ can be replaced by o; = (..., m;(t),d;(t), ...)

tion settings, the optimal policy may change.

1o =——=0" %0 QF
,0 Ie) O -0 O,

Fig. 1. The state graph Gg = (V,&g) and the observation graph Go =
(V,€0). The black and red lines correspond to edges in £s and Eo,
respectively.

1o 0? 0 OF
,@ I¢) O O O,

Fig. 2. The reward graph Gr = (V,ER).

Existing distributed policy gradient methods such as actor-
critic [13] and zeroth-order optimization [12] can be employed
to solve the problem when there is a connected undirected
communication graph among the agents. However, these ap-
proaches are based on estimation of the GVF, which requires a
large amount of communications during each learning episode.
Moreover, policy evaluation based on the GVF has a signif-
icant scalability issue due to the high dimension of the state

and action spaces for large-scale networks.

III. LocAL VALUE FUNCTION AND LEARNING GRAPH

In this section, we introduce how to design an appropriate
LVF for each agent, which involves only partial agents, but its
gradient w.r.t. the local policy parameter is the same as that
of the GVE.

A. Local Value Function Design

Although the state graph Gg, the observation graph Go, and
the reward graph G can be defined independently, we observe
that all of them will induce the couplings between different
agents in the optimization objective. In this subsection, we will
build a connection between these graphs and the couplings
between agents, based on which the LVFs will be designed.

Define a new graph Gso = (V, Eso) where 5o = E5UEo,
and define

RSO = {jeV:iS8 jpudil, ©6)

which includes the vertices in graph Gso that are reachable

from vertex ¢ and vertex ¢ itself. In fact, the states of the agents



in R¥© will be affected by agent i’s state and action as time
goes on.

To design the LVF for each agent i, we need to specify the
agents whose individual rewards will be affected by the action
of agent 7. To this end, we define the following composite
reward for agent i:

Fi(s(t),a(t)) = Y ri(szr(t), azx(t), (7)

. L
]ezi

where
IF={j eV IFNRC # 0} = Uperso LI, (8)

here Z['" = {j € V : (k,j) € Er} U {k} consists of the
out-neighbors of vertex k in graph Gr and itself.

To demonstrate the definitions of R7C and ZL, let us look
at Example 1. One can observe from Fig. 1 and Fig. 2 that
RO = R5C = IL = 7L = {1,2,3,4}. In fact, we have
RFC =T since ZJ7" C RPO for all k € RFC, i€ V.

Accordingly, we define the LVF for agent ¢ as

Vi(s) =E | D _A'7i(s(t),a(t)]s(0) = s| . ()
t=0

When the GVF is replaced by the LVF, the agent ¢ is

expected to maximize the following objective:

Ji(0) = Eeun V" (s) = D J5(0).

JjeTE

(10)

Different from the global objective function J(0) =
> jev Jj(0), the local objective Ji(0) only involves agents
in a subset Z' C V. We make the following assumption on
the graphs so that .J;(0) # J(0) for at least one agent i.

Assumption 1: There exists a vertex i € V such that T} #
V.

Define graph Gsor = Gso U Ggr. The following lemma
shows a sufficient graphical condition and a necessary graph-
ical condition for Assumption 1.

Lemma 1: The following statements are true:

(i). Assumption 1 holds if graph Gsor has n > 1 SCCs.

(ii). Assumption 1 holds only if graph Gso has n > 1 SCCs.

One may question if the converses of the statements in
Lemma 1 are true. Both answers are no. This is because
graph Gp may contain some edges that connect different
SCCs in G0, but the paths involving more than two vertices
in Gr cannot be used in expanding IZ.R. For statement (i),
Gsor may be strongly connected even when there exists a
vertex j € V \ ZF. Fig. 3 shows a counter-example where
Tl = {1,2,4} is only a subset of V but Gsog is strongly
connected. For statement (ii), a simple counter-example can

3 4 3 O 04 3 4 3 4
@ ®) © @

Fig. 3. A counter-example for the converse of Lemma 1 (i). Graphs (a), (b),
(c), and (d) denote graphs Gso, Gr, Gsor. and the learning graph Gr,
respectively.

be obtained by setting &g = V x V. Note that Lemma 1
induces a necessary and sufficient condition for Assumption 1
when Gso = Gsor, which happens when Gr C Gso.

Next we show that each agent ¢ € }V maximizing (10) is
equivalent to maximizing the global objective (4).

Given a function f(6) : R? — R and a positive §, we define

°(0) =E[f(0 + ou)], u~N(0,I,). (1)

The following lemma shows the equivalence between the gra-
dients of the smoothed local objective J¢(6) and the smoothed
global objective J° (0) w.r.t. the local policy parameter of each
individual agent.

Lemma 2: The following statements are true:

(i) Vo, J%(0) = Vg, J(0) for any § >0, i € V.

@ii) If J;(0), ¢ € V are differentiable, then Vg, J(0) =
Vo, Ji(0), i € V.

Lemma 2 reveals the implicit connection between graphs
and agents’ couplings in the optimization objective, and pro-
vides the theoretical guarantee for the reasonability of the
designed LVFs. It is important to give the following two notes.
(a). Although the RL algorithm in this paper is based on
Z00, Lemma 2 is independent of ZOO. Therefore, Lemma
2 is also compatible with other policy gradient algorithms.
(b). Statement (i) in Lemma 2 does not require J;(6), i € V
to be differentiable because J°(6) = E[J(6 + du)] is always
differentiable [36, Lemma 2].

In order to adapt our approach to the scenario when J(6)
is not differentiable, we choose to find the stationary point of
J(6). The gap between J(6) and .J°(#) can be bounded if
J(0) is Lipschitz continuous and ¢ > 0 is sufficiently small.

To guarantee the Lipschitz continuity® of J(#), we make
the following assumption on functions Vf(g)(s) for ¢ € V:

Assumption 2: Viﬂ(e) (s), i € V are L;-Lipschitz continuous
wrt. 0 in RY for any s € S. That is, |[V;" ) (s) — Viw(e/)(s)\ <

8The Lipschitz continuity of a value function implies that similar policy
parameters have similar performance for the problem. This is reasonable in
practice especially for problems with continuous state and action spaces. In
[37], it has been shown that the value function becomes Lipschitz continuous
w.r.t. policy parameters as long as both the MDP and the policy function have
Lipschitz continuity properties.



Li||0 — ¢'| for any s € S, 0,6" € RY.
Assumption 2 directly implies that J;(6) is L;-Lipschitz
continuous. Moreover, .J(6) is L-Lipschitz continuous in R,

where L £ Y, _,, L;, due to the following fact:

i€V

70) = 18] < ST1:0) — T8
%
<>E| ()] <> Lillo - @1l

i€V i€V

7r(9 )

B. Learning Graph

Lemma 2 has shown that having the local gradient of a
specific local objective function is sufficient for each agent to
optimize its policy according to the following gradient ascent:

OFt = 0F 1+ Ve, J2(0F), eV, (13)
where 6% is the policy parameter at step k, and Vg, JO(6%)
can be estimated by evaluating the value of .J? (6%).

Then we are able to define the learning graph G;, = (V, L)
based on the set Z (8) in the LVF design, which interprets the
required reward information flow during the learning process.

The edge set &, is defined as:

E={(,i))eVxV:jeTticV}. (14)

The definition of £, implies the following result.
Lemma 3: If (j,i) € &L, then ¢ Esop ;.
The converse of Lemma 3 is not true, see Fig. 3 as a
counterexample. More specifically, 1 £sop 3, as shown in
graph (c), however, (3,1) ¢ £, see the learning graph (d).

To better understand the learning graph Gp, we find a
clustering V = U, V; for the graph Gsop, where V; is the
vertex set of the [-th maximal strongly connected component
(SCC) in Ggp, and V;, NV, = @ for any distinct [;,ly €
c=A{1,..
n > 1 can always be found under Assumption 1.

According to the definitions (8) and (14), we have the
following observations:

n}. According to Lemma 1, such a clustering with

o The agents in each cluster V; form a clique in G..

o The agents in the same cluster share the same LVFE.

The first observation holds because any pair of agents in
each cluster are reachable to each other and (j,¢) € £y, as long
as j is reachable from ¢ in graph Gso. The second observation
holds because RS

same cluster, here R;© is defined in (6).

_ 1pSO ; : :
=R for any i and j belonging to the

To demonstrate the edge set definition (14), the learning
graph corresponding to the state graph and the observation
graph in Fig. 1, and the reward graph in Fig. 2, is shown in

Fig. 4. In fact, it is interesting to see some connections between

TN

40\/‘\_/8

Fig. 4. The learning graph G, corresponding to Ggo in Fig. 1 and G in
Fig. 2.

different graphs from the cluster-wise perspective. Please refer
to Appendix B for more details.

The learning graph Gy, interprets the required reward infor-
mation flow in our distributed MARL algorithm. If the agents
are able to exchange information via communications follow-
ing G, then each agent can acquire the information of its LVF
via local communications with others. The zeroth-order oracle
in [36] can then be employed to estimate Vo, jf(@k) in (13).
However, G, is usually dense, inducing high communication
costs, and having such a dense communication graph may be
unrealistic in practice. To further relax the condition on the
communication graph, in the next section, we will design a

distributed RL algorithm based on local consensus algorithms.

IV. DISTRIBUTED RL BASED ON LOCAL CONSENSUS

In this section, we propose a distributed RL algorithm based
on local consensus algorithms and ZOO with policy search in
the parameter space. ZOO-based RL with policy search in the
action space has been proposed in [38]. Compared to the action
space, the parameter space usually has a higher dimension.
However, the work in [38] requires the action space to be
continuous and leverages the Jacobian of the policy 7 w.r.t. 6.
Our RL algorithm is applicable to both continuous and discrete
action spaces and even does not require 7 to be differentiable.
In addition, our distributed learning framework based on LVFs

is compatible with policy search in the action space.

A. Communication Weights and Distributed RL Design

We have shown that agents in the same strongly connected
component share the same LVF. Therefore, there are n LVFs
to be estimated, where n is the number of maximal SCCs in
Gso. Moreover, it is unnecessary for an agent to estimate a
LVF that is independent of this agent. For notation simplicity,
we use Ifl to denote the index set of agents involved in the
LVF for the [-th cluster, [ € C. As a result, Ifl = IiL if
i € V;. Moreover, we denote by n; £ |Zf!| the number of
agents involved in the LVF of cluster [. Note that different
LVFs for different clusters may involve overlapped agents, that
is, it may hold that Ifll N If; # @ for different clusters Iy, Is.



Suppose that the communication graph Go = (V,E¢) is
available. To make each agent obtain all the individual rewards
involved in its LVF, we design a local consensus algorithm
based on which the agents involved in each LVF cooperatively
estimate the average of their rewards by achieving average
consensus. Define n communication weight matrices C! €

RN*N " as follows:
>0, ifi,j eI, (i,j) € Ec;
1
C’,;j ) lecC, (15)
=0, otherwise,

where C = {1, ...,

We assume that given an initial state, by implementing

n} is the set of indices for clusters.
the global joint policy m(0) = (m1(61),...,mn(0N)), each
agent 4 is able to obtain reward r;(6,&;,t), at each time step
t=0,.

policy evaluatlon, &; accounts for the random effects of both

—1, where T is the number of evolution steps for

the initial states and the state transition of agents involved in
agent i’s reward, E[¢;] = 0, and E[¢2] = 02, which is bounded,
1 € V. Then we rewrite the obtained individual value of agent
ias Wi0,6) 2 Yoot ytri(0,6,t) = E[Wi(0,86)] + &.
The quantity &; can follow any distribution as long as it has a
zero mean and a bounded variance. The zero mean assumption
is to ensure that agent ¢ is able to evaluate its individual
value W;(6,&;) and thereby estimate the gradient accurately,
if sufficiently many noisy observations are collected. The
boundedness of o; is to guarantee the boundedness of each
noisy observation. Similar assumptions have been made in
other RL references, e.g., [39].

We further define (0, ¢) Zjezf W;(0,¢;) as the
observed LVF value of agent 4, and define W(0,§) =
> icv Wi(0,&;) as the observed GVF value.

The distributed RL algorithm® is shown in Algorithm 1. The
consensus algorithm (16) is to make each agent ¢ in cluster V)
estimate —W (0% 4 suP ¢k = L o Ljert W;(0% + ouk, &),
which is the average of the reward sum among the agents
involved in the corresponding LVF.

To ensure that Algorithm 1 works efficiently, we make the
following assumption on graph G¢.

Assumption 3: The communication graph G¢ is undirected,
and the agents specified by Ifl form a connected component
of Go forall [ € C.

The following lemma gives a sufficient condition for As-
sumption 3.

Lemma 4: Given that graph G is undirected, Assumption
3 holds if £so C Ec.

In Algorithm 1, the transition probability of the MAS is never used. This
is consistent with most of model-free RL algorithms in the literature.

Algorithm 1 Distributed RL Algorithm

Input: Step-size 7, initial state distribution D, number of learning
epochs K, number of evolution steps 7. (for policy evaluation),
iteration number for consensus seeking T, initial policy parameter

6o, smoothing radius ¢ > 0.
Output: 6%.
1. for k=0,1,.., K —1do

2 Sample s& ~ D.

3. for all : € V do (Simultaneous Implementation)

4 Agent i samples uZ ~ N(0,I4,), implements policy
T (0F + 6uk) for t=0,. — 1, observes W; (8% +du”, £F).
For [ € C, sets uf'(0) « Wz(ﬁk +ouk, €8 if i € ZF', and sets
uF (0) < 0 otherwise.

5. for v=20,...,7. — 1 do

Agent i sends pf'(v), I € C to its neighbors in Gc,
and computes p' (v 4 1) according to the following updating

law:
it +1) = Y Cypy' (), (16)
JEI,LC
where ZE = NF U {i}, N€ denotes the neighbor set of agent
7 in the communication graph Ge.
7. end for
8. Agent ¢ estimates its local gradient
kl;
s (T
g1 (0%, u*, ") = 7”“‘“5( )k, (17)
where I; denotes the cluster including ¢. Then agent ¢ updates
its policy according to
07 =07 +0gi(6",u", €M), (18)
9. end for
10. end for

Proof: Note that for each cluster [ € C, there must exist a path
in Gso from cluster [ to any agent in Z{', recall that G is
undirected, agents in Ilcl must be connected in G |

Once a communication graph G¢ satisfying Assumption 3
is available, we design the communication weights such that
the following assumption holds.

Assumption 4: C! is doubly stochastic, i.e., Clly = 1y
and 1,C!' =11, forall [ € C.

Assumption 4 guarantees that average consensus can be
achieved among the agents involved in each LVFE. Since one
agent may be involved in LVFs of multiple clusters, it may
keep multiple different nonzero communication weights for
the same communication link. From the definition of C! in
(15), Ct;, = 0 for all j ¢ T}, and j' € V. Then p¥'(t) = 0
for j §é IiL for any p > 0. Moreover, let Cé € R™*™ be
the principle submatrix of C! by removing the j-th row and
column for all j ¢ ZF, then Assumption 4 implies that Cé is
doubly stochastic for all [ € C. Define p; = ||C} —

it has been shown in [40] that under Assumption 4, we have

”l nl ||



p1 € (0, 1).

Remark 2: When graph Ggo is strongly connected, all the
agents form one cluster and achieve average consensus during
the learning process. Algorithm 1 then reduces to a global
consensus-based distributed RL algorithm. In fact, under any
graph Ggo, the global consensus-based framework can always
solve the distributed RL problem. However, when Assumption
1 holds, Algorithm 1 requires consensus to be achieved among
smaller-size groups, therefore exhibiting a faster convergence
rate. When the multi-agent network is of large scale, it is
possible that the number of agents involved in each LVF
is significantly smaller than the total number of agents in
the whole network. In such scenarios, Algorithm 1 converges
much faster than the global consensus-based algorithm due to
two reasons: (i) the average consensus tasks are performed
within smaller-size groups; (ii) the gradient estimation based
on the LVF J;(0) has a lower variance compared with that
based on the GVF J(#), see Remark 3 for more details.

B. Convergence Analysis

In this subsection, convergence analysis of Algorithm 1 will
be presented. The following assumption is made to guarantee
the solvability of the problem (2).

Assumption 5: The individual reward of each agent at any
time ¢ is uniformly bounded, i.e., r; < r;(t) < r, foralli € V
and t € N.

Lemma 5: Under Assumption 5, there exist J; and .J,, such
that J; < J;(0) < J, for any 6 € R, i € V.

Lemma 5 implies that there exists an optimal policy for the
RL problem (4), which is the premise of solving problem (4).
o i€y Ji
by [Ji, Ju] and [J;, J,], respectively. The following lemma

Based on Lemma 5, we can bound JAi and J = )

bounds the error between the actual LVF and the expectation
of observed LVF.
Lemma 6: Under Assumption 5, the following holds for all
leCandicV:
|Ji(6) — E[W,

H(0,0)]] < iy Jo, (19)

where Jo = max{|/i[,[Ju} = 7%, ro = max{|r|, |r.[},
= |ZF| = |Z!| is the number of agents involved in J;(6).
Let pkt = (.., pk!, "');‘reIf
bounds the LVF estimation error.

€ RIZ1 the following lemma

Lemma 7: Under Assumptions 1, 3-5, by implementing
Algorithm 1, the following inequalities hold for any | € C
and i € V;:

Ji(6F + sub)| < B,

[E[npft (T2)] — (20)

Eeee [l (1)) < B en

where E; = plen?(J, — Ji + T Jo) + niyTe Jo, Bl =
n? (08 +(1+ VTE)ZJ(?), 00 = max;cy 0.

The following lemma bounds the variance of the zeroth-
order oracle (17).

Lemma 8: Under Assumptions 1, 3-5, for any ¢ € V), it
holds that E[||g; (6%, u*, ¢¥)[|2] < 2Lk,

Remark 3: (Low Gradient Estimation Variance Induced by
LVFs) Lemma 8 shows that the variance of each local zeroth-
order oracle is mainly associated with n; in B!, which is the
number of agents involved in the LVF for the [-th cluster. If the
policy evaluation is based on the global reward, the bound of
Efg: (6", u*, €%)|°] will be 2L
large scale, N may be significantly larger than n;. As a result,

. When the network is of a

the variance of the zeroth-order oracle is much higher than
that in our case. Therefore, our algorithm has a significantly
improved scalability to large-scale networks.

Theorem 1: Under Assumptions 1-5, let § = L\E/E’ n =

%. The following statements hold:
@i). [J2(8) — J ()| < € for any 6 € R%.
(i1). By implementing Algorithm 1, if
d3B2 1.5
K>—, T.>log, ma
€ n 0
a5 0 (22)
T.> 1o
800 o2 Ld(Jy — Ji + Jo)
then
1 K—1
E[|Ve.J°(0%)|7] < (23)
k=0

where B = 2(NJ, — J%(6°)) + L*n3 (02 + (1 + ~T<)2J2),
Po = MaXjec Pi-

Remark 4: (Optimality Analysis) Theorem 1 (ii) implies
the convergence to a stationary point of .J°(#), which is
the smoothed value function'. When the MARL problem
satisfies “gradient domination” and the policy parameterization
is complete, a stationary point will always be the global
optimum [41], [42]. Note that our formulation is general and
contains the cases that do not satisfy gradient domination. For
example, as a special case of our formulation, the linear opti-
mal distributed control problem has many undesired stationary
points [43].

Remark 5: (Sample Complexity Analysis) According to
Theorem 1, the sample complexity of Algorithm 1 is O( ”ég] o ),
which is worse than other ZOO-based algorithms in [44, Table

10The reason why we do not analyze the stationary point of J(6) is that
we did not assume J(6) to be differentiable. Since J¢ (8) is close to J(6) (as
shown in Theorem 1 (i)), an optimal policy for J®(8) will be a near-optimal
policy for J(#). If we further assume J(6) to have a Lipschitz continuous
gradient, then the error of convergence to a stationary point of J(6) can be
obtained by quantifying the error between VJ%(8) and VgJ(6).



1], which is mainly caused by the use of one-point zeroth-
order oracles and the mild assumption (non-smoothness and
nonconvexity) on the value function. In Section VI, we will
provide analysis on the advantage of using two-point zeroth-
order oracles. Note that the lower bounds of K, T, and 7T, are
all positively associated with ng, which is the maximal number
of agents involved in one LVF. According to the definition
of ZL in (8), m; is determined by the length of the path
starting from cluster [ in graph Ggo. This implies that the
convergence rate depends on the maximal length of a path
in Gso and having shorter paths is beneficial for improving
sample efficiency and enhancing the convergence rate.

When Assumption 1 is invalid, Lemmas 7 and 8, and The-
orem 1 still hold. However, the LVF-based method becomes
a GVF-based method and no longer exhibits advantages. In
this case, there is only one cluster and each path achieves its
maximum length, then the distributed RL algorithm becomes

centralized and the sample complexity reaches maximum.

V. DISTRIBUTED RL VIA TRUNCATED LOCAL VALUE
FUNCTIONS

Even if Assumption 1 holds, the sample complexity of
Algorithm 1 may still be high due to the large size of some
SCC or some long paths in Ggo. In this section, motivated
by [8], we resolve this issue by further dividing large size
SCCs into smaller size SCCs (clusters) and ignoring agents
that are far away when designing the LVF for each cluster in
the graph. For each cluster, the approximation error turns out
to be dependent on the distance between ignored agents and
this cluster. Different from [8], where each agent neglects the
effects of other agents that are far away, our design aims to
make each cluster neglect its effects on other agents that are
far away. Moreover, in our setting, the agents in each cluster
estimate their common LVF value via local consensus, whereas
in [8], each agent has its unique LVF, and it was not mentioned
how this value can be obtained.

A. Truncated Local Value Function Design

Different from the aforementioned SCC-based clustering for
Gso, now we artificially give a clustering V = U} ;V;, where
Vi, NV, = @ for distinct 11,1y < n, V; still corresponds to
a SCC in Ggso. However, each cluster may no longer be a
maximum SCC. That is, multiple clusters may form a larger
SCC of gso.

Next we define a distance function D(%, j) to describe how
many steps are needed for the action of agent ¢ to affect
another agent j € ZF. According to Lemma 1 (i), when
(j,1) € &L, there is always a path from ¢ to j in Gsor. Let

P(i,7) be the length of the shortest path '! from vertex i to
vertex j in graph Gsor. The distance function is defined as

0, =],
D(Za]): P(’Lm])a (]72) Eg[n (24)
00, (]72) %gL'

We clarify the following facts regarding D(7,j). (i). It may
happen that there is a path from 4 to j in Ggog but (j,i) ¢ &,
see Fig. 3 as an example. Therefore, to exclude j ¢ TF, we
artificially defined D(, j) instead of using P(i, j) directly to
characterize the inter-agent distance. (ii). The distance function
D(i,j) defined here is unidirectional and does not satisfy
the symmetry property of the distance in metric space. (iii).
Although the artificial SCC clustering is obtained from Ggo,
the path length P(i,7) is calculated via graph Gsor because
it always contains all the edges from i to any j € ZF. If Gso
is used instead, some agent in Z}*, j € 7' may be missing.

We further define the distance from a cluster [ to an
agent j as D(V,,j) = min;ey, D(4,5). Denote by Df =
max;ecy D(V, j) the maximum distance from cluster [ to any
agent out of this cluster that can be affected by cluster /. Since
we have defined n; = |Z¢!|, it is observed that D} = n; — [V

Given a cluster [ € C, for any agent 7 € V;, we define the
following TLVF:

J(6) = ez J7(0), k= Dy,
Z Yjeve J5(0), K < DY,

where V' = {j € V : D(V,,j) < K} is the set of agents
involved in the TLVF of cluster [, x € N is a pre-specified

(25)

truncation index describing the maximum distance from each
cluster | within which the agents are taken into account in the
TLVF of cluster [. Similarly, we define Ji(6) = 3= ;72 J;(6)
if kK > Dy, and J;(0) = ZjeV; J;(6) otherwise, W;(0) =
ez Wi(0) if x> Di, and W;(0) = > jeve Wil
otherwise.

The following lemma bounds the error between the local
gradients of the TLVF and the GVE.

Lemma 9: Under Assumption 2, given cluster [ and agent
i € V), the following bound holds for .J¢(6):

IV, 72 (8) = Vo, P (O)]] < v+ Y L;+/dd,,

JEVE

(26)

where Vi ={j €V :k <DV, j) < oo} =V, \ VF.
Lemma 9 implies that the error between Vy, jf (#) and

Ve, J%(0) exponentially decays with the exponent . There-

fore, when 71 is sufficiently small, by employing Vg, J?(6)

"IThe length of a path refers to the number of edges included in this path.



in the gradient ascent algorithm, the induced error should be
acceptable. This is the fundamental idea of our approach. In
next subsection, we will propose the detailed algorithm design

and convergence analysis.

B. Distributed RL with Convergence Analysis

Next we design a distributed RL algorithm based on the
TLVFE. It suffices to redesign the communication weights, so
that the value of J%(6) (instead of .J?(6)) can be estimated
for each agent ¢ € V. For any cluster [ € C, instead of using
Ifl, we set the index set of agents involved in the LVF as

Ir =T nVy.
Define the number of agents involved in each TLVF as
> Dy
np={ M= @7)
Vil + k&, k<Dj.

Recall that D = n; — [V}, it always holds that n} < n;.
The I-th communication weight matrix is then redesigned

e [ >0,
C Y s,

where C = {1,...,n}.

Similar to Assumptions 3 and 4, we make the following two

as

ifi,j € I, (i,7) € Ec;

lecC, (28)

otherwise,

assumptions.

Assumption 6: The communication graph G¢ is undirected,
and the agents specified by Z;* form a connected component
of Go forall [ € C.

Assumption 7: C* is doubly stochastic for all [ € C.

Note that Assumption 6 is milder than Assumption 3
because " C Ifl, implying that fewer communication links
are needed when the TLVF method is employed. Moreover,
when the communication graph Go is available, x can be
designed to meet Assumption 7 .

The distributed RL algorithm based on TLVFs can be ob-
tained by simply replacing the communication weight matrices
C! with CH%, for all [ € C.

Similar to Lemmas 6, 7 and 8, we have the following results.

Lemma 10: Under Assumption 5, the following holds for
allleCand i€V

|Ji(6) — E[W,

(0,9)]] < niy"e Jo. (29)

Lemma 11: Under Assumptions 1, 5-7, by implementing
Algorithm 1, the following inequalities hold for any [ € C and
1€V

B[ (T.)] = Ji(0" + 6ub)| < EF, (30)

Berun | [mpt'(T.))°] < By, (31)

where Ef = (pf)T(nf)? (Ju — Ji + 77 Jo) + (nf)?~yT Iy,
B = (nf)*(of + (1 +77)%J3). 00 = maxiey 04, pf =
106" — A Lu L
Lemma 12: Under Assumptions 1, 5-7, for any ¢ € V), it
holds that E[[|g; (6%, u*, €¥)||?] < BLk
Theorem 2: Under Assumptions 1, 2, 5-7, let § = Lf/&’
=5 f The following statements hold:
@). |J°(8) — J(0)| < € for any 0 € RY.
(ii). By implementing Algorithm 1, if
d3BQ 61.5
K > T, > log, ——5——
T é 74 2LdJy’
ARy
T.>1 )
= %800 4(ng)2Ld(J, — Ji + Jo)
then
1 K—1
E[||VeJ°(08%)]]?] < e+ry"T! maX|Vl |Lo+/ddo, (33)
k=0
where B = 2(NJ,, — J°(0°)) + (n§)? (02 + (1 +~T<)2J3) L*

ng = maXjec nf

Remark 6: (Sample Complexity Analysis) The sample
complexity provided in Theorem 2 is associated with ng,
which may be significantly smaller than ng (depending on the
choice of x) in Theorem 1. On the other hand, the convergence
error in Theorem 2 has an extra term associated with ~*+1.
Therefore, there is a trade-off when we choose «. The greater
K 1is, the smaller the convergence error will be, however,
the convergence rate may be decreased. For example, when
~#t1 < 0.028 if kK > 6. In this case, we
can choose k = 6, implying that each cluster only consider

v = 0.6, we have

its effects on 6 agents other than this cluster even when Gso
is strongly connected. Therefore, when the network is of a
huge scale with long paths in graph Ggo, using the TLVFs
can further reduce the sample complexity.

VI. VARIANCE REDUCTION BY TWO-POINT
ZEROTH-ORDER ORACLES

The two distributed RL algorithms proposed in the last
two sections are based on the one-point zeroth-order oracle
(17). We observe that Algorithm 1 is always efficient as
long as g(#*,u*,£F) is an unbiased estimate of Vg.J°(6%)
and E[||g(0%, u*
feedback oracles proposed in [36] and the residual feedback

,€F)]1?] is bounded. Therefore, the two-point

oracle in [44] can also be employed in Algorithm 1. In this
section, we will give a brief analysis on how the two-point
zeroth-order oracle further reduces the gradient estimation
variance.



Based on the LVF design in our work, the two-point
feedback oracle for each agent i at learning episode k can
be obtained as
1) — vl (Te) k

C ny,u;

6 1

ks
(0 gy = 1o (34)
vIi(T.) is  the
Wi(6%,¢*)/ny, via local consensus.

where approximate estimation of

Define L; = > jeTt L;, which is a Lipschitz constant of
W;. Then we can show (35), where ¢ = (&1,...,&n) T and
¢ = (C1,-,Cn) T are the noises in the observations W; (6% +
Su® €F) and W; (0%, ¢¥), respectively, i.e., W;(0F +6u®, ¢F) =
E[W (0% +5u¥, €5)]+&, Wi(6, C*) = E[W (6%, V)] +¢;: the
first inequality used the bound E; in (20) and the assumptions
E[¢] = E[¢;] = 0 and E[¢?] < 09, i € V.

Comparisons with one-point feedback. Note that F; in
(20) can be arbitrarily small as long as 7. and 7T, are
sufficiently large. Let us first consider the ideal case where the
consensus estimation is perfect 7, = oo and the observation
EW;] = J; (T, = oo and & = 0),
then F; = 0 and oy = 0. As a result, the upper bound of

is exact, ie., W, =

E[||g: (0%, u*, £€*)||?] is independent of §, whereas the upper
bound of E[||g; (0%, u*, £*)||?] becomes n?.J3d; /5%, as shown
in Lemma 8. This implies that the variance of the two-point
zeroth-order oracle is independent of the reward value and the
maximum path length ng, thus is more scalable than the one-
point feedback. Now we consider a more practical scenario
where both the consensus estimations and the observations
are inexact. For convenience of analysis, we consider § > 0
as an infinitesimal quantity and neglect terms in the upper
bounds independent of the network scale. Then we have
E[||g: (0%, u*, £%)|?] = O(nyd;/6?). In Lemma 8, we showed
that the variance bound for the zeroth-order oracle with one-
point feedback is O(n?d;/6?). Therefore, when § > 0 is small
enough, the two-point zeroth-order oracle still outperforms the
one-point feedback scheme in terms of lower variance and

faster convergence speed.

VII. SIMULATION RESULTS

In this section, we present two examples, where the first
one shows the results of applying Algorithm 1 with the
communication weight matrices (15) to the resource allocation
problem in Example 1, and the second one shows the results of
applying Algorithm 1 with the communication weight matrices
(28) to a large-scale network scenario.

Example 2: We employ the distributed RL with LVFs
in (10) to solve the problem in Example 1. To seek the

optimal policy ;(0;) for agent 7 to determine its action

{bij}je NS, We adopt the following parameterization for the
policy function:

exp(—z;)
bij = ) (36)
N Zjeli exp(—2zij)
where z;; is approximated by radial basis functions:
zij = ) lloi — caxl| 05 (k). (37)
k=1

cik = (&,,Cik) € RIZ7I+1 is the center of the k-th feature
for agent ¢, here ¢;;, € RIZI and C;i are set according to the
ranges of mz, and d;, respectively, such that c;,, kK =1, ..., n¢
are approximately evenly distributed in the range of o;.

Set m;(0) =1+ y; forall i = 1,...,9, x; and w; are both
set as random variables following the Guassian distribution
with mean 0 amd variance 0.01 truncated to [—0.01,0.01], the
number of evolution steps 7, = 10, and the number of learning
epochs K = 1500, y;(t) — d;(t) = 0.5sint. The commu-
nication graph Go = (V,&c) is set as Go = Gso U Gdp),
which satisfies Assumption 3. Let G be the 0-1weighted
matrix of graph G¢, that is, G¢(i,5) = 1 if (i,5) € E¢ and
Gol(iyj) = 0 otherwise. Let df = > (iyeee Golisj). The
communication weights are set as Metropolis weights [45]:

1
1—|—maX{dic,dJC ’
l_ l
¢y = J1-30l,
J#i
0, otherwise,

if 4 #]a Zaj EIIClv(i7j) € EC;

if ©+ = j;

(38)

where [ € C.
By further setting the consensus iteration number 7, = 10,
n = 0.01, and § = 2, Fig. 5 (left) depicts the evolution of
the observed values of the GVF by implementing 4 different
RL algorithms. The two boundaries of the shaded area are
obtained by running each RL algorithm for 10 times and
taking the upper bound and lower bound of W (6%, £*) in each
learning episode. Here £* denotes the specific noise gener-
ated in the simulation, and is different in different learning
processes. In each time of implementation, one perturbation

vector u

is sampled and used for all the 4 algorithms
during each learning episode k. The centralized algorithm
is the zeroth-order optimization algorithm based on global
value evaluation, while the distributed algorithm is based on
local value evaluation (Algorithm 1). The distributed two-point
feedback algorithm is Algorithm 1 with g; (6%, u*, £¥) replaced
by g;(0%,uk, £F) in (34). We observe that the distributed
algorithms are always faster than the centralized algorithms.

Fig. 5 (middle) and Fig. 5 (right) show the comparison



E[]lgi(6*, u*, €")II”) = E[|

Ji(0F + 8ub) — J;(0%) + ng, pF(TL) — J;(0F + ouk) + Ji(6%) — my, v (T2)

0
Ji(0% + 5u¥) — Ji(0%) + Elng, p; ™ (T0)] — Ji(0F + 6u) + Ji(6%) — Elng,v;" (To)] + 3 jezr (6] — ¢F)

—E| -

< 2E[LE||u* 2]l IP] + 2 (2E3)° + 2m0) El||uf | /8%]

J
uy %]

(35)

< 2L [ EllulT+EL Y luglPIEllwill®] | +4(2E7 + miog)d; /8°

JeEV\{i}
<207 ((di +4)° + (d — di)d;) + 4(2E7 + mog)d; /6
= QI:ZQ(dZd + 8d; + 16) + 4(2EL2 + nlag)di/52,

of centralized and distributed one-point feedback algorithms,
and the comparison of centralized and distributed two-point
feedback algorithms, respectively. From these two figures, it
is clear that the distributed algorithms always exhibit lower
variances in contrast to the centralized algorithms. This implies
that policy evaluation based on LVFs is more robust than that
based on the GVF.

Example 3: Next, in a setting similar to Example 1, we
consider an extendable example with N warehouses. By

regarding 1 and IV + 1 as the same warehouse, we set
Es=Eo={(i,j)eV?:|i—j|=1,i=2k—1,k € N}.

The reward graph is set as Gr = GJ. According to the
definitions introduced in Subsection III-A, we have IZ-L =
{i,i+1,i+2,i—1,i—2}ifiisodd, T} = {i,i + 1,5 — 1}

if 4 is even, for all ¢ € V.

The communication graph Go = (V, E¢) is set as Go = Gy,
implying that each agent can estimate its LVF value without
using the local consensus algorithm. The learning iteration step
is set as n = 0.05. Other parameter settings are the same
as those in Example 2. By implementing four different RL
algorithms, Fig. 6 shows the results for N = 20, N = 40,
and N = 80, respectively. Observe that the convergence time
for distributed algorithms remain almost invariant for net-
works with different scales, whereas the centralized algorithms
converge much slower when the network scale is increased.
Moreover, the two-point oracle always outperforms the one-
point oracle in terms of lower variance and faster convergence.
These observations are consistent with our analysis in Remark
2 and Section VI.

Example 4: Now we consider N = 100 warehouses with
connected undirected state graph and observation graph,

Es=Eo={(i,j) €V ]i—j| =1},

where warehouse 1 is also viewed as warehouse N + 1.

The edge set of graph Gr = (V,ER) is set as g = O,
implying that the individual reward of each agent only depends
on its own state and action. In this case, the learning graph G,
is complete because % Esq 7 for any ¢, j € V. Then Algorithm
1 with the LVF setting in (10) becomes a centralized algorithm.
Hence, we employ the TLVF defined in (25). The communica-
tion graph is set as Go = Gg. By setting V, = {413, ..., 4},
[ =1,...,25, and choosing same parameters m;(0), T, 2;(t)
as those in Example 2, the simulation results for x = 0, 1
and 2 are shown in Fig. 7. We observe that the distributed RL
algorithm with x = 0 gains the lowest variance and fastest
convergence rate. This means that in this example, the TLVF
approximation error does not harm the improved performance
of our RL algorithm. Moreover, the smaller « is, the faster
the algorithm converges, which is consistent with the analysis
in Remark 6. Note that according to the analysis in Example
3, each cluster corresponds to one agent, and the maximum
distance between a cluster ¢ and an agent affected by this
cluster is 2 (in Gsor). Therefore, we only considered cases
with k < 2.

VIII. CONCLUSIONS

We have recognized three graphs inherently embedded in
MARL, namely, the state graph, observation graph, and reward
graph. A connection between these three graphs and the
learning graph was established, based on which we proposed
our distributed RL algorithm via LVFs and derived conditions
on the communication graph required in RL. It was shown
that the LVFs constructed based on the aforementioned 3
graphs are able to play the same role as the GVF in gradient
estimation. To adapt our algorithm to MARL with general
graphs, we have designed TLVFs associated with an artifi-
cially specified index. The choice of this index is a trade-off

between variance reduction and gradient approximation errors.
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Fig. 7. Comparison of Algorithm 1 based on TLVFs with x = 0, 1, and 2,
respectively, for Example 4.

Simulation examples have shown that our proposed algorithms
with LVFs or TLVFs significantly outperform RL algorithms
based on GVF, especially for large-scale MARL problems.

The RL algorithms proposed in this work are policy gradient
algorithms based on ZOO, which are general, but may be not
the best choice for specific applications. In the future, we are
interested in exploring how our graph-theoretic approach can
be combined with other RL techniques to facilitate learning
for large-scale network systems.

IX. APPENDIX A: PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 1. (i). Suppose that Z' =V for all i € V.
Since Gsor has n > 1 SCCs, there must exist distinct 4, j € V
such that j is not reachable from ¢ in Gsor. However, IZ-L =
V implies that there exists k € )V such that j € I,?"', and
k e Rf o, implying that j is reachable from 7 in Gso U GRg,
which is a contradiction.

(i1). Suppose Ggo only has 1 SCC. According to (6),
RPC = V for any i € V. This implies that ZF = V for

any ¢ € V, which contradicts with Assumption 1. |
Proof of Lemma 2. Define
Ji0)=JO) = Ji0) = > EeenVP(s0).  (39)

; L
JEV\Z;

Next we show that .J;(f) is independent of 6;.

Let RPO™ ={jeV:j Esq i} U {i} be the set of vertices
in graph Ggo that can reach ¢ and vertex . Note that for each
agent j, its action at time ¢, i.e., a;(t), is only affected by the
partial observation o,(t), the current state s;(t), and policy
0;. Therefore, there exists a function f; : O; x R% — P(A;)



such that

aj(t) ~ f3(0j(1),65) = fi({sr(t) }rezo 65)- (40)

Similarly, according to the definition of P;, there exists
another function h; : I 7sSk X Hycrs Ay — P(S;) such
that ’ ’

si(t) ~ hi({sk(t = Dhezs: {ar(t = Dhezs), ¢4
together with (40), we have
s3(t) ~ hi({sr(t = D}iezso, {0ihiezs), 42)
and
a;(t) ~ fi({he({s0 (t = D}y ezg0, 100 hiyez3) brezo s 03)s
(43)

where IJSO = I]S UI]O.

According to (42) and (43), we conclude that {s;(t),a;(t)}
is affected by 6; if | € R}go_. As a re-
sult, {si(t),axr(t)}rezr is affected by 6; only if [ €
UreznRR7™ £ 4. J

Next we show once j ¢ IiL, it must hold that ¢ ¢ A;, i.e.,
6; will not affect {sy(t), ar(t)} ezr. By the definition in (8),
j ¢ T} implies that Z' N R — . That is, there are no
vertices in IJR that are reachable from vertex ¢ in graph Ggo.
As aresult, i ¢ A;.

Then we conclude that 6; influences
7j(szr(t),azr(t)) for any t > 0 if j ¢ Z}. Therefore,
J;(0) is independent of 0;.

Proof for (i): it has been shown in [36] that

only

never

1

VoJ’(6) = 0 /d J(O+ 5u)e_%”“u2udu, (44)
R
where ¢ = [ e~ 2l qu. Define
O = (04, 5dy, - La;s - Oy xdy ) € REX (45)
then u; = ®%u. It follows that
Vo, J°(0) = 'V’ (0)
= i/ J(0 +6u)67%“"“2u-du
0p Jga '
1 ; ~Ljuy?
= 30 e Ji(0 4 du)e 2 udu (46)
+ L/ Ji (0 + 6u)67%H“”2u~du
5(p Rd 1 1 .
Let §; = (...,9;, )JT# € R4, q; = (,u]T,);;l €

R?=4:, Since we have proved that J;(# + du) is independent
of u;, the following holds:

/ J:(0+ 5u)6_%”“‘|2uidu
Rd

\
e

_ T8 + 6u)e 311 g, / el gy —
| e,

Rd—d;

Therefore,

Vo, J(8) = -

=5 Ji(0 + ow)e™ 21 widu = Vo, J2(0). @47
R4

Proof for (ii): differentiability of Ji(0) for all < € V implies
that J;(¢) for all i € V and J(0) are differentiable as well.
Since J;(0) is independent of §;, we have

Vo, J(0) = Ve, (Ji(0) + Ji(0)) = Vo, J:(0). (48)

This completes the proof. |

Proof of Lemma 5. Given any policy m(#), it holds that

G t > t 1 A
D ilsi(t) i) £ 3 're = ora B (49)
t=0 t=0

Similarly, it can be shown that J; = —1i,yrl. |

Proof of Lemma 6. From the definition of J;(6) and
Wi(0,&;), we have

[J:(0) — E[W:(0,8)]| =

E [Z wfn(sz-m,ai(t))} ‘

T . (50)
t v
< Z’ym: 17’yr0.
t=T,
Then we have
N ~ n, Te
1J:(6) — E[W:(6, )] < 3 15(6) — E[W;(0,9)]| < T —ro.
JjeTk
The proof is completed. ]

Proof of Lemma 7. Note that the following holds for any
step v:

w50+ 1) = L1 (0 4+ 1) = 1, Cop™ (v) = 15,4 (v),
jezk
(5D
where the last equality holds because C} is doubly stochastic.
T, kl _ T (pF k ¢k
It follows that 1, p*(v) = W;(6% + du”, &) for any v €
[0,T].

Next we evaluate the estimation error. The following holds:

nlukl(v) - lanA[/'i(QlC + 6uk,§f)
= np® (v) = 1,15, 4 (v)
=mChuF (v —1) — 1nllz“ukl(v -1)

1
= (Co = - L) (0 = 1) = L 1 a0 = 1) (52)

1 v
= (Ch - Lo 1o,)" (nup® (0) — 15,153, 1™ (0))
1

— ("t _ —
— G-+

15, 1,))° (™ (0) — 1, Wi (0" + 60", €F)),
where the second equality used (51) and the third equality
holds because (Cf — 1-15,1,, )10, 1,5, ¥ (1) = 0.

ny—-ng



As a result, for any v € [0,T.], we have
HIE [nlukl(v)} -1, jl(ﬂk + 5uk)H
< || [t ) = 10,0 + 5k, b |
1y, (0% 4+ 5ub) = B [1, W6 + 50, €4

E [nlukl(O) - 1n,Wi(0k + 5uk,£f)} H +niyTedy

|

<p
D IE [nl,ukl(O) —1,,J;(0F + (5uk)} H +(p) +1
< pini (Ju — Ji) + (pf + D)niv" Jo

= ping (Ju — Ji + 7" Jo) + niy" Jo,

yniye Jo

(53)

where the second inequality used (52) and Lemma 6, the
third inequality used Lemma 6 again, and the last inequality
used the uniform bound of J; and the fact that E[u}!(0)] =
E[W;(6% + sub, €6)] < T (6%).

Due to Assumption 4, we have min 7z W,(0F +
Suf &)y < pfi(T,) < max;err W, (08 + duF,&F). Let
ip = argmax;czr |W; (0% + Suk, €F)|. Then we have

Eer oy “mufl(Tc)}z] < niBerngy W2 (0 + 0uF, €M)

=" EE"NH[( ) ] +n (]Efkw?-[[ i (ek + 6uk7§k)])2

< niod +n}(Ji, (0F + ouk) +~T Jp)?

<ni(og + (1 +97)"T5). (54)
The proof is completed. |

Proof of Lemma 8. According to (17), we have
2
Elllgs (0%, €)7) = Eon [Bese [ (! (1.))°] Iub1?]
B
< —E [[|luf]?]
“w
_ ﬂ/ ||uk||2e*%|\uif\|2du{</ o3Il gy
52 d; v ¢ ]Rd_di

B 1 k2 1 2
<l [ e3P gyt o= 3012 gy
5 Rd—d;

B“dZ
3 (55)

where ¢ is defined in
used (21), and the second inequality holds because
Jra \\U?\\ze’%”“?”zdw < di [ e*%Huszduf, which

has been proved in [36, Lemma 1]. |

(44), the first inequality

Proof of Theorem 1. Statement (i) can be obtained by using
the Lipschitz continuity of J(#). The details have been shown
in [36, Theorem 1].

Now we prove statement (ii). According to Assumption 2

and [36, Lemma 2], the gradient of .J%(6) is v/dL/r-Lipschitz
continuous. Let g(0%) = (g{ (6),....,g5(0%))T € R, the

following holds:

|2 (0 1) = J2(0") = (VeJ° (6%),ng(6M)))|
< YL 2ot )P 56
which implies that
(VoJ°(0%),ng(6"))
< IO = J°(0%) + ‘[L n?lg(0" ,u* €52 (57)
Lemma 8 implies that
N
E[llg(0",u*,&%)11°1 = > Elllg:i (0", u", &)%)
=1 (58)

N
<> Bl'd;/s* < Bfd/s?,

i=1

where Bl = maxjec Bl' = n3 (02 + (1 +~7¢)2J2).

Moreover, Lemma 7 implies that
E [<v91‘]5(9k)’gl(0k7 uk’gk)ﬂ
= E[|| Vo, J°(6")[I°]
+E[(Vo, J2(0%), mupf (Te)ul /6 — Jy(0F + 6u*)ul /5)]
E [V, (0")* + E7 |luf ||?/6%]

E2d,
262

> E[[| Vo, J(0°)]%] ~

SElIVe, J(0M)]°] - (59)
where the first equality used Lemma 2 and Vy, Jo(6F) =
E[J: (6% + §uF)ul /6], the inequality used (20). Summing (59)
over ¢ from 0 to N yields

E2d

E[(Vo(0"), 9(6", u*,€5)] > SE(IV6 (6] - —o5 (60)

where EO = maX;ecy l;‘z

Combining (60) and (57), and taking expectation on both
sides, we obtain

1 E2d
STEIIVe I (017 = g
< BP0 = 709)+ L g0 o, ¢)|)
1.5
SE[ O = J°(0M)] + Lié;f ", ©1)

where the second inequality employed (58).

Note that under the conditions on 7., we have

61'5

Summing (61) over k£ from 0 to K — 1 and dividing both



sides by K, yields

iK_lEmvef( 01

K =0

I ) B
o]

< % [Q(NJu — J0°)) + L4Bg] + % (63)

where the second inequality used (62), the last inequality used
the conditions on ¢ and 7. The proof is completed. ]

Proof of Lemma 9. When x > Dj, (25) implies J?(0) =
Jo(8). JO(0) — Vg, J%(6)|| = 0. Next we
analyze the other case.

Let 79(s;(t),a;(t)) be the individual reward of agent i at
time ¢ under the global policy 7(6). Due to Lemma 2, it

CLet J0(0) = Xjevp Mimo'i(8)(s;(t),a;(1)), and
TP (0) = Zjef}f Y1 Vri(t)(s5(t), a;(t)). Then

JX(O) — J2(0) = J. . (6) + TP . ().

suffices to analyze ||V, J? —

(64)

Notice that if D(V;,j) > k, then the reward of each agent
j € VF is not affected by cluster V, at any time step ¢ <
k. Therefore, VglJfK(G) = 0, which leads to (65), where
the second equality used the two-point feedback zeroth-order
oracle [36], the third equality used the definition of Vf(g)(s),
the second inequality used Assumption 2, the third inequality
used Holder’s inequality. The proof is completed. ]

Proof of Theorem 2. Here we only show the different part
compared with the proof of Theorem 1.

E[(F0,°(6%), : (6%, 0", €"))] = B[ V07" (0")])
+E[(Vo, J°(0%), mupt (Te)us /6 — Ji(0F + u®)us /6)]
+ E[<V91 ‘]6 (Qk)ﬂ vei jl(ok) - Vei jl(ak»]

> B[|Vo, J(6)] ~ SE[IIVo,7(6%) ] — (B2 /6% — G2 a2

CIRTY

= SElIVe. J (O] - 53 52

(66)

where~ Ay = yrtl Zjefff Lj\/ddi, the first equaliEy used

uF)uk /8] = Vg, J;(6), the inequality used ab > —La2 — b2,
Then we have

1 d d
BL(Vo°(0), (0", o, €] > Sevoroty - EESD_ 2 gz
where Ef = maxepEF, Ay = maxepA; =

v maxjec | V| Loy/ddo.

It follows that

1 E§)?d
[\ o A VY
VdL
<E[(0°T) - J°(6)] + WﬁE[IIg(@’c "]
LBE 1.5
< E[J° (0" — J°(0%)] + 2%? n?, (67)
where B = (nf)?(o8 + J3).
Therefore, the following holds:
1 K-—1
9 k 2
= 2_ EllVe " (67)I]
k=0
2 LBgd"® 2E3d
< 2§ (e - ren) + PEE ] 4 20 K
2 . Ld'*® €
<5 [?(NJVJ (0%) + (n)* (06 + J5) =551 ] +5+ 52A0
d1.5 2d
< oTw 2V = 7°(67) + (i (08 + L] + 5 + 5543
(68)
The proof is completed. ]

X. APPENDIX B: PROPERTIES OF CLUSTER-WISE GRAPHS

In this appendix, we will analyze the relationships among
graphs Gx, X € {S,0, R, L} from the cluster-wise perspec-
tive.

Inspired by the observations in Subsection III-B, the graph
Gy, in Fig. 4 can be interpreted from a cluster perspective. By
regarding each cluster'? (corresponding to a maximal SCC in
Gso) as a node, and adding a directional edge (I, o) between
any pair of nodes [1,lo € C as long as there is at least one
edge from cluster /; to cluster l» in Gy, we define the cluster-
wise graph of Gy, as the graph ggl in Fig. 8 (a). Similarly,
we define cluster-wise graphs for Ggo and Gsor as gglo and
gglo - Tespectively. In Example 1, due to the setting that there
are no edges between different clusters in Gg, it holds that
Gdy = G¢4 R, as shown in Fig. 8 (b). Note that Gso # Gsor
since £ Z Eso. The cluster-wise graph G for a graph G is
constructed by regarding each cluster as one node, and adding

‘one edge between two nodes if there is an edge between two

agents belonging to these two clusters in G, respectively. Note
that a SCC in Ggp remains to be a SCC in G, and Gsorg.-
Therefore, an edge from cluster /; to cluster l5 in gl always
implies that any vertex j € V), is reachable from any vertex
i € V), in the corresponding node-wise graph G. Based on
this fact, we give a specific result regarding the relationship
between ggl, gglo and gglo R as below.

12please note that the clustering in this paper is only conducted once for
graph Ggo. The clusters discussed in other graphs still correspond to SCCs
in graph Ggo.



IV6: T3 (8) = Vo, T (0| = Vo, J7x (0)|
s[5 e 60,00 - D21 o), H
JEVF 0
O+ou 0
J;ﬁ Eu~/\/(0 1) [||E5~D t;ﬂ ’Vt i (SJ (t)7 @ (t)zg T (SJ (t)7 4 (t))Ui So = S||:|
©(0+6u) (0)
— et j;f Euortorp [HESND Vi (SMHS;_ V; (SMH)W o0 — S} q 65)
YUY LiE[lullfusll]
JEVE
<Y L E(llulPD YA s
JEVE
<N LVdds,
JEvE
Cluster 1 O
of Gsor-
(iii). Sufficiency. The condition implies that the reachability
Cluster 3  Cluster 4 between any two vertices in Ggo is the same as that in Ggor.
Cluster 2 @ O @) Therefore, £5, = €2 1.
(a) Necessity. Suppose that there exists an edge (i,j) € Egr
such that j is not reachable from ¢ in Ggo. Then ¢ and j
Cluster 1 O must belong to two different clusters /; and g, respectively.
It follows that (I1,l3) € Esor and (I1,l2) ¢ Eso, which
contradicts with G&, = G& R [ |
Cluster 3 Cluster 4 In the existing literature of MARL, it is common to see the
Cluster 2 O O O assumption that Z* = {i}. In this scenario, € = @ C Es0,
(b) therefore it always holds that G¢! = (G&,) " = (G&yp) T

Fig. 8. (a). The cluster-wise learning graph ggl
960 or GSon-

. (b). The cluster-wise graph

Lemma 13: Given Gg, Go, Gr and the induced G, the

following statements are true:

() (£§0)T CEF C (Edor) s
(ii) (gglo)—r = g (gSOR) it &g C ESO;
(iii) (gglO)T = gL = (gSOR)T if and only if ¢ gﬂj for

any (i, j) € Ep.
Proof. (i). Given (I1,l2) € £, there must hold that i £sq j
for any ¢ € V), and j € V;,. Due to the definition of Gy, we
have j € ZF (i.e., (j,i) € £1) for any i € V;, and j € V),,
implying that (I1,12) € ()T, Therefore, £&, C (EE)T. Tt
follows that (£g,)T C &¢.

On the other hand, for any (I1,l5) € £, we have (i,j) €
&r, for some ¢ € V), and j € V). According to Lemma 3,
7 %598 i Hence, (I1,15) € (Edp) T

(ii). By the virtue of statement (i), it suffices to show that
gglo = gglo r if Er C Eso, which is true due to the definition
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